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ABSTRACT: All else equal, disparities in environmental exposure are associated with disparities 

in health and economic well-being. Here, we combine 9 years of data on toxic water pollution 

discharges from more than 1,600 industrial facilities across urban Mexico with geographic, 

economic, and sociodemographic data from ≈ 50,000 Mexican urban block groups. We first show 

that industrial facilities pollute more in marginalized neighborhoods and in neighborhoods that are 

becoming more marginalized over time. In contrast, we find no evidence for relationships between 

toxic water pollution and indigenous race. We then explore channels driving observed exposure 

disparities. We find evidence that environmental disparities in urban Mexico are associated with 

collective action, community pressure, and Coasian bargaining. We do not find evidence consistent 

with political economic or amenity-based sorting mechanisms.  
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1. INTRODUCTION 

All else equal, disparities in environmental exposure are associated with disparities in 

health and economic well-being (Cohen et al. 2017, Isen et al. 2017). Environmental disparities 

have normative welfare implication for fairness, equity, justice, and the interests of future 

generations (Temkin 2003, Colmer et al. 2020, White House 2021). For these reasons, and others, 

the unequal distribution of pollution exposure across populations has captured public attention for 

decades. The media, NGOs, and community groups regularly call attention to correlations between 

race and poverty and toxic waste, air pollution exposure, deforestation, and land reform 

(Carruthers 2008, Mohai et al. 2009, Banzhaf et al. 2019). Unequal vulnerability across 

populations to natural disasters, unsafe drinking water, and the recent global pandemic are further 

sharpening calls to better understand environmental justice and its underlying mechanisms. 

 In this paper, we characterize and attempt to explain disparities in toxic water pollution 

exposure across urban Mexico. We explore associations between urban industrial water pollution 

and local households’ racial composition and wealth status, which we measure using a summary 

marginalization index. Specifically, we ask, are toxic water pollution discharges higher in more 

marginalized or higher minority neighborhoods? Are toxic water pollution discharges increasing 

in neighborhoods that are becoming more marginalized or in neighborhoods with growing 

minority populations? We then explore the mechanisms that may explain unequal distributions of 

exposure to toxic water pollution in urban Mexico. Our mechanistic explorations consider channels 

such as collective action, Coasian bargaining, and community pressure; political economy 

influences; and Tiebout sorting or “coming to the nuisance” (Banzhaf et al. 2019). 

To explore our questions, we combine 9 years of data on toxic water pollution discharges 

from more than 1,600 industrial facilities across urban Mexico with geographic, economic, and 
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sociodemographic data from ≈ 50,000 Mexican urban block groups. We focus on water discharges 

of toxic contaminants like arsenic, cadmium, chromium, cyanides, lead, mercury, and nickel 

because they pose unusually serious human health consequences including cancer, cardiovascular 

issues, neurological effects, and reproductive abnormalities. We emphasize urban areas of Mexico 

because most of the world’s severe toxic water contamination concerns occur in urbanizing and 

industrializing areas of middle-income countries like Mexico (Landrigan et al. 2018).  

We characterize pollution exposure disparities using raw correlations and nonparametric 

binned scatterplots that highlight the statistical distribution of pollution across the entire observed 

range of socioeconomic characteristics (Chetty et al. 2014). We then analyze first-differences and 

fixed effect models to explore within-location relationships between toxic water pollution, 

marginalization, and indigenous race, after controlling for trends common to all facilities or all 

facilities within a region. We highlight sources of variation for our models. We discuss possible 

limitations for interpreting our results as the effects of marginalization and race on pollution 

discharges, including threats to causal interpretation from time-varying omitted variables and 

reverse causality from residential sorting. We then explore mechanisms associated with observed 

relationships by investigating heterogeneity in pollution / marginalization relationships. We also 

consider associations between pollution and local migration, residency, and population turnover 

and what those associations may (or may not) imply for amenity-based sorting. 

Our results indicate that industrial facilities’ toxic water pollution discharges in urban 

Mexico are associated with marginalization and increasing marginalization. For example, using 

within-locality variation over time, we show that a one standard deviation increase in a 

neighborhood’s marginalization index between 2005 and 2013 is associated with a 15 to 40 percent 

increase in arsenic, cadmium, chromium, cyanides, lead, mercury, and nickel water discharges by 
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local industrial facilities. In contrast, we fail to reject null hypotheses of no statistical relationship 

between toxic water pollution discharges and indigenous race measures. In terms of underlying 

channels driving relationships, we find evidence most consistent with collective action and 

Coasian bargaining. We find no evidence consistent with public political engagement or amenity-

based sorting mechanisms.  

As public attention to environmental inequality increases, so too does the related literature. 

We build off earlier studies exploring disparities in pollution exposure and vulnerability to 

environmental change (Bowen 2002, Ringquist 2005, Mohai et al. 2009, Banzhaf 2012, Agyeman 

et al. 2016, Narloch and Bangalore 2018, Banzhaf et al. 2019). In other middle-income country 

settings, Dasgupta et al. (2002), Bayar et al. (2014), Ma et al. (2018), Lome-Hurtado et al. (2019), 

and Yang and Liu (2019) explore relationships between air pollution exposure and socio-economic 

factors in Brazil, Turkey, Mexico, and China. Other studies explore local health and economic 

wellbeing effects of proximity to mining activity in low- and middle-income countries (von der 

Goltz and Barnwal 2019, Rivera 2020). Additional predecessors examine “pollution havens” and 

the environmental implications of trade flows between higher and lower income countries 

(Eskeland and Harrison 2003; Cole 2004; Blackman et al. 2004; Fullerton 2006; Levinson and 

Taylor 2008; Grineski and Collins 2008; Collins et al. 2009; Grineski et al. 2015).  

Relative to this broadly related literature, we make three contributions. First, we provide 

evidence on pollution disparities related to poverty and race across a large geographic area in a 

low or middle-income country. Second, we provide evidence on inequities in exposure to toxic 

water pollution discharges. Third, we investigate the evidence for economic mechanisms driving 

our observed disparities. For data availability reasons, most empirical studies exploring 

environmental disparities are set in high-income countries. Studies focused on environmental 
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inequality in low- or middle-income countries typically focus on especially salient air pollution, 

extractive industry locations, or vulnerability to disasters. Exceptions commonly use data from 

relatively small geographic areas like a metropolitan area or small transboundary region. 

Relatively few studies explore heterogeneity in pollution / marginalization relationships in low- or 

middle-income countries and explore the underlying economic mechanisms.1 

 Our work is most closely related to Chakraborti and Margolis (2017). Chakraborti and 

Margolis (2017) use similar data from urban Mexico to consider contemporaneous correlations 

between toxic water pollution and marginalization. We go beyond Chakraborti and Margolis 

(2017) by exploring relationships between pollution and race, by exploiting graphical evidence 

and the panel nature of the data to better understand relationships, and by investigating the potential 

economic channels driving associations. Explaining observed disparities may help inform 

implications for environmental policy.2 

2. BACKGROUND & HYPOTHESES 

2A. Toxic heavy metals 

We study inequities associated with heavy metal contaminants discharged into water. We 

focus on seven potentially toxic substances: arsenic (As), cadmium (Cd), chromium (Cr), cyanides 

(CN-), lead (Pb), mercury (Hg), and Nickel (Ni).  We investigate heavy metals because large acute 

or chronic exposures can have serious human health consequences. The Commission for 

Environmental Cooperation (CEC), the organization largely responsible for establishing the toxic 

release registry in Mexico, designates our seven pollutants as “special interest” (CEC 2011). The 

 
1 An exception is Rivera (2020), which documents evidence consistent with residential sorting as rental prices decline 
near mining activity in Chile, especially for new residents and in areas where pollution is unusually salient.  
2 From a data and methods perspective, Chakraborti and Margolis (2017) consider contemporaneous associations 
between marginalization and pollution at single snapshots in time. We consider the average relationships between 
marginalization and pollution over the full period from 2005 to 2013. We also differ by defining toxic water pollution 
to include both direct and indirect releases.   
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Lancet Commission on Pollution and Health identifies four of these substances as among the 

“greatest threats to health” from chemical pollution (Landrigan et al. 2018). Five of the seven 

substances (As, Cd, Cr, Pb, Ni) are known or reasonably anticipated to be carcinogenetic in 

humans.3 Non-cancer health outcomes associated with these substances include: cardiovascular 

issues ranging from arrhythmia to heart failure; neurological effects including sensory problems 

and motor signaling disruptions; reproductive issues ranging from infertility to offspring 

abnormalities; respiratory problems spanning inflammation to respiratory failure; musculoskeletal 

issues affecting structure and function of bones and muscles; renal problems including kidney 

disease and kidney failure; and developmental and neurobehavioral problems in newborns, infants, 

and children. Other health complications associated with one or more of the substances include 

endocrine (hormonal) disruption, immune system problems, and dermatological issues. 

Industrial facilities are the predominant anthropogenic cause of environmental circulation 

of As, Cd, Cr, CN-, Pb, Hg, and Ni in water. Important local sources include facilities in the energy; 

chemicals; metals processing; pulp, paper, wood; concrete, stone, clay, glass; food, beverages, 

tobacco; and electronics sectors. Health consequences of toxic water pollution often remain highly 

localized around facilities (CEC 2011). As such, the neighborhood-level associations between 

pollution and socio-demographics explored in this paper are plausible.  

2B. RETC, Mexico’s toxic pollution registry 

Mexico’s contaminant release registry is RETC,4  which is modeled after the US Toxic 

Release Inventory (TRI) and the Canadian National Pollutant Release Inventory (NPRI) and 

 
3 See, for example, EPA’s Integrated Risk Information System assessments. https://www.epa.gov/iris . 
4 Registro de Emisiones y Transferencias de Contaminantes (RETC), translated as Pollution Release and Transfer 
Registry). Spurred by provisions of the North American Free Trade Agreement (NAFTA), RETC was authorized 
under a 2001 amendment to Mexico’s General Law of Ecological Equilibrium and Environmental Protection (el Ley 
General de Equilibrio Ecológico y Protección al Ambiente).  
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formally implemented in 2004. Like TRI and NPRI, Mexico’s RETC is not a regulatory database. 

Instead, RETC serves to track and inform stakeholders about potentially toxic pollutants 

processed, transferred, or released into or onto air, water, or land. Reporting is at the facility-level, 

so toxic pollution can be traced to sources. Reporting is mandatory for specified facilities and 

chemicals. Like facilities reporting into the TRI and NPRI, RETC facilities may use a variety of 

methods to measure or estimate their activities and releases including emission factors, mass 

balance, engineering calculations, stack testing, and direct measurement. Estimation approaches 

are not recorded in RETC databases. 

Despite similarities between RETC, TRI, and NPRI, aspects of toxic pollution tracking 

differ between the Mexican registry and its North American counterparts. US and Canadian 

registries track several hundred pollutants each (TRI >600, NPRI >300), while RETC formally 

tracks 104 pollutants. In practice, considerably fewer pollutants are regularly reported. 

Additionally, mandatory reporting procedures and thresholds differ across systems. TRI and MPRI 

define thresholds largely by manufacturing, processing, or otherwise-used (M/P/U) “activities”, 

while RETC thresholds are defined by both M/P/U “activities” and emissions “releases”. As a 

general rule, for toxic water pollutants, RETC reporting thresholds are considerably more stringent 

(lower) than TRI or MPRI thresholds.5 Under RETC, facilities must report As, Cd, Cr, Pb, Hg, and 

Ni discharges if the total M/P/U exceeds 5 kg per year or if the amount discharged to the 

environment exceeds 1 kg per year. Facilities must report on Cyanide compounds (CN-) if the total 

M/P/U exceeds 2500 kg per year or the amount discharged to the environment exceeds 100 kg. 

Another difference between RETC and its counterparts is that only facilities in 11 industrial 

 
5 Similarly, facilities in the US and Canada must have 10 employees for required reporting. There is no employee 
threshold under the Mexican system. 
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sectors (including energy, chemical, automotive, cement, metals, and petroleum) must report.6 In 

Canada and the US, essentially all facilities meeting thresholds are required to report. Due to this 

distinction, and due to differences in relative scales of economic activity across countries, fewer 

facilities report into RETC than into the US TRI or Canadian MPRI. During any given year, 

between 2500 and 4500 facilities will report into RETC. Historically, less than half of facilities 

reported releases into water. Roughly 30% reported only greenhouse gases and roughly 20% 

reported on air and land activities / releases without reporting any water activities / releases.   

2C. Pathways linking toxic pollution and socio-demographics 

Much of our initial empirics focus on first-order environmental disparities hypotheses:  

(H1) Pollution from industrial facilities in urban Mexico is associated with more marginalized 

neighborhoods and in neighborhoods that are becoming more marginalized over time. 

(H2) Pollution from industrial facilities in urban Mexico is higher in minority neighborhoods 

and in neighborhoods with growing minority populations over time. 

Potential mechanisms driving the inequities described in H1 and H2 are well explored in 

the literature.7 Several theories focus on inequities largely established at the time of facility siting. 

For example, industrial owner-operators may locate facilities in minority and marginalized 

neighborhoods due to preferences for discrimination towards poor or minority populations (Becker 

1957; Hamilton 1995; Agyeman et al. 2016). Owner-operators may locate facilities near factors of 

production - like low land prices, access to transportation, or industrial agglomeration – that are 

correlated with marginalized or minority populations (Wolverton 2009, 2012).  

Low income and minority populations may also be disproportionately exposed to industrial 

pollution at any given point in time, or over time, via other channels including: 

 
6 A technical exception is that all facilities polluting into “national water bodies” must report releases. 
7 See, for example, Mohai et al. 2009, Banzhaf 2012, Banzhaf et al. 2019.  
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(M1)  Community pressure and Coasian bargaining mechanisms. Industrial owner-operators may 

pollute more when and where community activism directed towards the facility or where 

necessary Coasian compensation payments to communities may be lower (Coase 1960; 

Hamilton 1995; Ash and Fetter 2004; Banzhaf 2012; Timmins and Vissing 2017; Banzhaf 

et al. 2019). A literature suggests that direct community actions and “informal regulation” 

are especially influential in low and middle-income countries like Mexico, as more formal 

regulatory pressures are less prominent (Pargal and Wheeler 1996; Dasgupta et al. 2000; 

Seroa de Motta 2006; Ma 2010; Feres and Reynaud 2012).  

(M2) Public political engagement mechanisms. Industrial owner-operators may pursue 

opportunities to pollute when and where populations are less politically active in order to 

minimize formal regulatory attention (Hamilton 1993, 1995; Brooks and Sethi 1997; Arora 

and Cason 1999; Helland and Whitford 2003). Governments can affect facilities’ costs of 

environmental performance via monitoring, enforcement, and legislative pressure 

(Banzhaf et al. 2019). Evidence suggests that regulator inspections and penalties are 

associated with political action correlates in the United States (Gray and Shadbegian 2004; 

Konisky 2009; Shadbegian and Gray 2012).  

(M3) Amenity-based sorting mechanisms. In models of residential sorting (Tiebout 1956, Been 

1994), wealthier groups move away from polluted areas and poorer individuals move into 

polluted areas after declines in property values. This “moving to the nuisance” or 

“environmental gentrification” amenity-based sorting hypothesis has received particular 

attention in the economics, policy, and law literature for rich countries (Been 1994; Been 

and Gupta 1997; Banzhaf and Walsh 2008; Gamper-Rabindran and Timmins 2011, and 

Currie et al. 2015).  
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Although we make no attempt to contribute novel theory, we follow the literature and note 

that the mechanisms above generate sensible empirical predictions under reasonable assumptions. 

Since our study analyzes pollution conditional on the existence and operation of an industrial 

facility, we do not consider empirical predictions of mechanisms largely operating at the time of 

establishment siting. Relevant empirical predictions of (M1) – (M3) may include: 

(EP1) The strength of relationships between pollution and marginalization (or race) will be 

associated with shares of renter-occupied housing if community pressure and bargaining 

(M1) is an important mechanism (Ash and Fetter 1994; Rohe and Stewart 1996). Renter- 

vs. owner- occupied housing is a standard proxy for the propensity of local populations to 

engage in community pressure or bargaining.  

(EP2) Relationships between pollution and marginalization (or race) will be associated with voter 

turnout if public political engagement (M2) is an important mechanism (Shapiro 2005). 

Voter turnout is a standard proxy for public political engagement.  

(EP3) Industrial pollution will be positively associated with residential mobility and population 

turnover in all areas if amenity-based sorting (M3) is an important mechanism. Advantaged 

households may move out and disadvantaged households may move in where and when 

pollution is disproportionately high. Turnover may increase as pollution increases.8 

3. DATA 

To explore the causes and consequences of environmental disparities in urban Mexico, we 

use fine-scale sociodemographic data from the Mexico National Institute of Statistics and 

Geography’s Population and Housing Census and the Mexico National Population Council 

(Consejo Nacional de Población, CONAPO). We match these sociodemographic data to annual 

 
8 Although out-migration of advantaged households and in-migration of disadvantaged households may leave total 
population unchanged, sorting is expected to lower the population share that has lived in the same area for many years.  
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facility-level toxic pollution discharges data from RETC. Later mechanistic explorations match 

data to additional sources including voter turnout data from the Federal Election Institute (IFE) 

and municipal-level migration data and local-level renter share data from the census.  

3A. Sociodemographic data 

 We collected urban AGEB-level data from the 2000, 2005, and 2010 general and “conteo” 

censuses.9 AGEBs, for Área Geoestadística Básica Urbana, are the original units of observation. 

Mexico contains more than 50,000 AGEBs with an average size of ~0.4 square kilometers and a 

population of approximately 1650 people. For perspective, the average population density in 

urbanized areas of the US is ~ 800 people per square kilometer. For each urban AGEB, we extract 

measures like wealth correlates and poverty indicators; educational attainment; health indicators; 

residency and nationality statistics; indigenous identity; housing tenure; and population density. 

AGEB-level data facilitate credible local matches between socio-demographics and pollution 

(Gray et al. 2010).10 

 For ease of interpretation, our main analyses focus attention on relationships between toxic 

water pollution and two summary sociodemographic statistics. Following Chakraborti and 

Margolis (2017), our first summary measure is an overall marginalization index, which 

characterizes households’ overall wealth status. Direct income measures are unavailable in 

Mexican censuses and such measures would reflect self-reported annual income rather than more 

desirable holistic measures of wealth and well-being (CONAPO 2011). Our marginalization index 

is calculated by the National Population Council based on the first principal components of 

 
9 General censuses are conducted every ten years for years ending in 0 and “conteo” censuses are conducted every ten 
years for years ending in 5. Conteo censuses ask fewer questions but still target the entire population. 
10 Although Mexican administrative data also defines rural administrative units, these units differ systematically from 
urban AGEBs and detailed sociodemographic census data are available only for urban AGEBs. Since 
sociodemographics are central to our analysis, we study urban AGEBs alone. We reiterate here and elsewhere that 
urban AGEB-level data imply that we do not study rural areas.  
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available education, health, household quality, and earnings indicators for the given census 

(CONAPO 2011, Data Appendix). Scores range from small negative numbers to small positive 

numbers, with more positive index scores indicating greater marginalization and less wealth and 

well-being. The second summary measure is an indigenous population variable. Following official 

practice of the Mexico National Institute of Statistics and Geography, we identify indigenous race 

by the fraction of the population over 5 years old that self-reports speaking at least one of 62 native 

Mexican languages.11  

3B. RETC data 

 Using RETC data, we identify facilities emitting toxic substances into Mexican waterways 

between 2005 and 2013. RETC began in 2004 and data from that year appear incomplete. At the 

time of our data downloads, RETC data from 2014 onward appeared incomplete. This is likely due 

to lags associated with populating facility-level information into the national RETC database. 

For each RETC facility, we obtain a unique identifier, latitude, longitude, and industrial 

sector. We use latitude and longitude to establish administrative locations like AGEB (of >50,000), 

municipality (of >2,000), state (of 32), and region (of 6) (Data Appendix). We translate (from 

Spanish to English) and standardize industrial sector definitions to: energy; chemicals and allied 

products (including plastics and paints); food, beverages, and tobacco; metals; stone, clay, glass, 

and concrete (including asbestos); automotive; wood, pulp, and paper; electronics; petroleum and 

petrochemicals; and other, including services.   

 For each facility, we obtain self-reported annual pollution discharges, measured in 

kilograms of emissions, for arsenic (As), cadmium (Cd), chromium (Cr), cyanides (CN-), lead 

 
11 Indigenous race data are only available from the 2005 Conteo census. The Mexican census also defines race using 
self-reported cultural identity to identify indigenous populations. This measure is highly correlated (r>.95) with the 
more “official” linguistic approach to defining race. Our choice has no bearing on any subsequent results. 
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(Pb), mercury (Hg), and Nickel (Ni). For each contaminant, we analyze total pollution discharges 

into water defined as the sum of direct emissions and indirect emissions (via sewage systems). We 

focus on total discharges for two reasons. First, roughly 75 percent of As, Cd, Cr, CN-, Pb, Hg, 

and Ni plant-by-year water discharge observations represent only direct emissions. Second, the 

ultimate fate of indirect emissions is not tracked. Observers note that reductions in toxicity from 

Mexican wastewater treatment plants are highly variable and that emissions reported as indirect in 

the RETC database result in at least some direct emissions to surface waters (CEC 2011). 

3C. Final analysis sample 

 Where possible, we construct a final dataset for analysis following the insights from the 

literature on methodological issues and spatial choices in environmental justice scholarship (Baden 

and Coursey 2002; Baden et al. 2007; Noonan 2008; Gray et al. 2010; Boyce et al. 2016). For each 

geo-located facility, we use GIS to spatially join the facility to all AGEBs (akin to smaller census 

block groups) within a fixed radius of the polluting plant. For each facility, we assign a value to 

each sociodemographic or supplemental measure using the simple unweighted average of the 

values for that measure over all AGEBs falling within the fixed radius. Our main analysis uses a 

1km radius.12 We choose census-based geographic units because they reflect populations and 

neighborhood borders more naturally than postal codes or other administrative units (Gray et al. 

2010). We choose relatively small radii for the assignment mechanism to reduce potential for 

ecological inference fallacy (Gray et al. 2010; Banzhaf et al. 2019). We choose the fixed radius 

approach because formal exposure assessments for RETC facilities have not been conducted and 

credible mathematical risk assessments for toxic water pollution in Mexico are unavailable. We 

acknowledge that toxic heavy metal dispersion and transport in water can be complex and that 

 
12 We later explore robustness to 1.5km and 0.5km radii, since the literature notes the choice of scale can be particularly 
important in environmental inequality studies (Baden et al. 2007; Noonan 2008). 
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risk-based approaches to modeling exposure have advantages in many settings (Ash and Fetter 

2004; Mohai et al. 2009). In our urban Mexico setting, however, risk-based or other alternatives 

to fixed radius approaches would need to rely on unusually strong assumptions.  

We construct our final facility sample as follows. We first identified all RETC industrial 

enterprises reporting any data into RETC for our seven toxic water pollutants in the nine years 

from 2005 and 2013. This exercise yielded 3,250 facility identifiers. We ultimately analyze a 

subsample of 1,631 distinct facilities that: (a) reported water pollution discharges for at least one 

of our 7 toxic substances for at least one year during our sample period; (b) had reliable geo-

location information in RETC databases; and (c) could be linked to one or more urban block group-

level (AGEB-level) units with complete census data. Our final sample does not include facilities 

in rural areas, facilities lacking latitude and longitude information, and facilities with latitude and 

longitude coordinates that were implausible.13 Our last data cleaning step involved consolidating 

multiple facility identifiers for the same physical plants.14  

Armed with a final sample of facilities, we validated pollution data. First, we extensively 

explored missing pollution data (Data Appendix).15 Second, we preprocessed non-zero pollution 

 
13 “Implausible” locations were determined by inputting coordinates into the Mexican Statistical Agency’s National 
Directory and Statistics on Economic Units (DENUE) database. We also include a legitimate facility located offshore. 
14 87 of the 1631 sample facilities experienced at least one change in ownership or name during the sample period. 
Changes in facility ownership or name will result in a new RETC identifier for the same physical plant, so our final 
sample defines facilities by location and not identifier. We lack data on the exact timing and full details of the name 
or ownership change. To ensure that name or ownership changes are not driving our results, we replicated the analysis 
dropping the 87 facilities experiencing name or ownership changes from the sample (Appendix Table 8). Results are 
statistically indistinguishable from the main results, although the smaller sample size results in somewhat less precise 
estimates in some specifications. 
15 Missing data are not uncommon. In our exploration of missing data, we reassuringly do not find a significant 
relationship between the act of plant reporting and local marginalization or race (Data Appendix). Personnel from 
Mexico’s environment ministry do assess recordkeeping and pollution reporting as part of their air, water, and waste 
programs. During our sample period, there were 273 fines for recordkeeping violations across all RETC industrial 
facilities with a mean penalty of USD $30.50, a median penalty of USD $9.60, and a maximum penalty of USD $916. 
We are unable to assess the accuracy of emissions reports themselves. Incentives to misreport actual release 
magnitudes, at least from a regulatory perspective, are likely low. RETC is not a regulatory database. Reporting 
unusually high toxic water pollution discharges into RETC cannot and does not result in any direct government 
penalties, fines, or sanctions. A literature on self-reported pollution emissions suggests that self-reporting can be 
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data. Like data in other North American toxic registries, some of the RETC pollution values appear 

inaccurate (CEC 2009). Officials at Mexico’s environment ministry (Secretaria de Medio 

Ambiente y Recursos Naturales, or SEMARNAT) noted occasional errors in their own reviews of 

RETC data: “[we note] errors in the conversion of units and errors in the selection of the 

appropriate substance for report (substances with similar names are often interchanged)” (de 

Eicker et al 2010, p11-12). In the raw data, the maximum value for each of the seven pollutants 

was 40 to 100 standard deviations larger than the mean.16 Absent a clear consensus on the treatment 

of data entry errors and outliers in the related literature, we preprocess the data with 0.5% 

trimming. After 0.5% trimming, pollution distributions shared a distributional support with 

independent evaluations of toxic water emissions from RETC, TRI, and NPRI (CEC 2011).17  

3D. Summary statistics 

Figure 1 maps the 1,631 Mexican industrial facilities in our final sample. Sample facilities 

span urban areas across the entire country. Roughly 39% of facilities are in the center, 31% are in 

the northeast, 17% are in the west, 5% are in the northwest, 5% are in the south, and 2% are in the 

southeast.18 Our sample includes several clusters of facilities in Mexico’s larger and more 

industrial urban areas including Mexico City (Distrito Federal), Guadalajara / Zapopan, Puebla, 

Reynosa / Matamoros, Juarez, Tijuana, Monterrey, San Luis Potosi, and Aguascalientes. 

 
incentive compatible and can be implemented without affecting facilities’ reporting incentives, particularly when fines 
for high reported discharges are low ($0, in this case) (Malik 1993; Kaplow and Shavell 1994; Shimshack 2014). 
16 As an example of extreme outliers, some values in the raw data for both nickel and lead exceeded independent 
reports of total emissions of those substances from the US, Canada, and Mexico combined. The maximum value for 
Nickel in the raw data was roughly 100 billion times greater than the median. 
17 Results are also robust to winsorizing or trimming at smaller or larger thresholds. Main result point estimates are 
similar in magnitude, but less precisely estimated, when using raw pollution data with no preprocessing. 
18 A limitation of our study is that our sample does not include many maquiladoras under state or municipal 
jurisdiction. To be clear, if a maquiladora meets at least one of the criteria for major toxic polluter it is included in our 
database. Some maquiladoras are too small to appear in our dataset. Our fixed effect structures (including facility 
location fixed effects and locality-by-year fixed effects) should reduce bias from possible correlations between 
unobserved (small) maquiladora locations, our facility locations and pollution discharges, and local socio-
demographics.. 
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 31% of 1,631 sample facilities are in the chemicals and allied products sector; 16% are in 

the metals processing sector; 10% are in automotive sector; 7% are in the electronics sector; 7% 

are in the food, beverage, and tobacco sectors; and 29% are in other sectors. The average facility 

is located in a neighborhood where 35% of the population lacks access to healthcare; 22% of the 

population lives in overcrowded housing (defined as more than 2 persons per room); 20% of the 

population lacks direct access to piped water; 13% of the population has no refrigerator; 6% of the 

population lives without sanitary drainage; and 1.2% of the population is indigenous.  

 Mean discharges of Ni, Pb, Cr, Cd, CN-, As, and Hg are 39, 36, 30, 9, 7, 3, and 1 kilograms 

per year (Data Appendix). We note that average toxic water emissions per facility in our dataset 

are high relative to those reported into the US TRI or the Canadian NPRI. This fact is confirmed 

in independent evaluations of RETC (CEC 2011) and reinforces that urban Mexico is an unusually 

high toxic water pollution setting. For all pollutants, discharges are highly variable and right 

skewed. Coefficients of variation (σ/μ) are roughly 6 or 7. Pollution varies over time as well as 

space. Temporal “within” standard deviations are typically smaller than cross-sectional “between” 

standard deviations, but both are large.19  

In Figure 2, we plot average water pollution discharges for each contaminant across years. 

We standardize each pollutant (i.e. subtract μ and divide by σ) to visualize contaminants on 

comparable scales. The key message of Figure 2 is that per facility releases of As, Cd, Cr, CN-, 

Pb, Hg, and Ni are roughly 0.1 to 0.2 standard deviations higher in 2013 than in 2005. Figure 2 

also highlights co-movement in toxic water pollutants.20 

 
19 As: σ-within 18.2, σ-between 20.3; Cd: σ-within 40.4, σ-between 65.6; Cr: σ-within 143.3, σ-between 199.4; CN: 
σ-within  27.0, σ-between 46.6; Pb: σ-within 123.9, σ-between 253.1; Hg: σ-within 5.2, σ-between 5.1; Ni: σ-within 
184.9, σ-between 221.5. 
20 Additional summary statistics, including trends in the components of the marginalization index, are presented in the 
Data Appendix. Most components of marginalization are decreasing (improving) over time, although non-
monotonically, including: population ages 6-14 not attending school; households without piped water; households 
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4. ANALYSIS 

4a. Empirical approach 

We begin our analysis by characterizing correlations between pollution discharges and 

local marginalization as well as correlations between pollution discharges and race. We care about 

these basic associations, because – whatever the cause – it is useful to understand if disadvantaged 

households are exposed to more toxic water pollution discharges than more advantaged 

households. These raw correlations have normative welfare implication for fairness, equity, and 

justice. To explore these correlations, we graph binned scatterplots and estimate their associated 

conditional expectation functions (following Chetty et al. 2014). 

For economics and policy considerations, it is useful to understand whether correlations 

between toxic water pollution discharges and marginalization (or race) may be ultimately driven 

by omitted variables correlated with both marginalization (or race) and pollution discharges. 

Consider a spatial omitted variable like the quality of institutions and governance. An area with 

systematically poor institutions and lax governance might experience more poverty and more 

pollution. Consider a temporal omitted variable like economic conditions throughout Mexico. 

Suppose, for example, that urban Mexico experienced economic shocks that simultaneously 

influenced changes in poverty and toxic water pollution over time. A related source of confounding 

might involve a temporal omitted variable common to all areas within a specific municipality (or 

state or region), but not necessarily common to all areas within the full sample. Suppose, for 

example, that Guadalajara experienced a policy shock (correlated with both poverty and pollution) 

not experienced by Mexico City, Monterrey, or other municipalities. In these omitted variable 

cases, documented correlations between marginalization and pollution may be largely driven by 

 
without a refrigerator; mortality rates; and population without access to basic health services. In contrast, households 
with overcrowding are increasing over time in our sample. 
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confounding third factors.  

To help minimize identification from time-invariant omitted variables and/or omitted 

variables trending commonly across facilities within a given geospatial area, we estimate panel 

models using first differences, facility and year fixed effects, or facility and municipality-by-year 

fixed effects. These approaches identify statistical relationships using only within-group variation. 

The research design underlying our estimators can be thought of as a comparison of changes in 

pollution discharges over time for facilities in areas experiencing larger increases in 

marginalization over time versus changes in pollution discharges over time for facilities in areas 

experiencing smaller increases in marginalization over time, after controlling for trends common 

to all facilities across urban Mexico or all facilities within a specific municipality / state / region. 

Another important issue for interpreting relationships between pollution and 

marginalization or pollution and race is reverse causality from residential sorting. If advantaged 

households move away from pollution nuisances due to environmental disamenities, and/or 

disadvantaged households move towards pollution nuisances due to lower rents or home prices 

spurred by environmental disamenities, pollution may drive marginalization rather than vice versa. 

From an empirical perspective, three issues related to sorting bear noting. First, in our first-

differences or fixed effects models, identification is within-area only. As such, sorting attributable 

to time-invariant longer-run average differences in pollution across areas does not contribute to 

the identification. This is not to say that residential sorting based on longer-run average differences 

in pollution necessarily does not occur; it is certainly possible that advantaged households move 

away from (or choose not to locate near) a facility because the local area is more polluted on 

average than another area. However, such sorting does not contribute to statistical identification 

and our panel estimates should be interpreted as relationships net of sorting based on average 
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differences. Second, sorting attributable to trends in pollution common all facilities within a 

municipality (and thus common to all facilities within a state or region) does not contribute to 

identification in our models with municipality-by-year fixed effects. Again, this is not to say that 

residential sorting based on trends in pollution within a municipality necessarily does not occur; it 

is certainly possible that advantaged households move away from (or choose not to locate near) a 

facility because the entire municipality is experiencing increases in pollution over time. However, 

such sorting does not contribute to statistical identification and our panel estimates should be 

interpreted as net of sorting based on trends in pollution common to all facilities within a 

municipality.  

Third, the above points notwithstanding, our approaches do not fully eliminate the 

possibility of reverse causality due to residential sorting. If, for example, advantaged households 

move away from (or choose not to locate near) a facility because that particular local area is 

experiencing increasing pollution relative to other localities within its municipality, our results 

represent the simultaneous effects of marginalization on toxic discharges and toxic discharges on 

marginalization. In this case, our main results will overstate the effect of marginalization on toxic 

water pollution discharges.21 

Finally, we explore empirical evidence for mechanisms. We explore interactions including 

the effects of voter turnout and renter/owner occupancy on relationships between pollution and 

marginalization. We explore evidence for relationships between pollution and population turnover, 

as measured by the share of the local population living in the area for more than 5 years. We note 

here and elsewhere that mechanistic explorations should be interpreted with some caution, as 

 
21 As discussed below, we lag marginalization measures as well, so the concern here is more precisely articulated as 
‘advantaged households move away from a facility because its future pollution may increase disproportionately 
relative to other locations in the same municipality.’ 
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interacted facility-level characteristics may be correlated with observed and unobserved 

confounders. In addition, due to data limitations, our proxies fall short of ideal data.    

4b. Methods 

First, we present binned scatterplots of pollution discharges vs. our marginalization 

measure. We then present binned scatterplots of pollution discharges vs. our indigenous race 

measure (% speaking indigenous languages).22 Binned scatterplots give non-parametric 

representations of conditional expectation functions across the entire range of socioeconomic 

measures when the underlying datasets are too large for simple scatterplots to be interpretable 

(Chetty et al. 2014). Since scatterplots with hundreds or thousands of observations are difficult to 

interpret visually due to congestion, binned scatterplots group the x variables into equal sized bins 

and generate scatterplots using each bin’s x variable mean and y variable mean for each data point 

(Chetty et al. 2014). In all scatter plots, we use a default of 20 bins. As a consequence, each bin 

(and corresponding point on the plot) represents a summary statistic from 5 percent of the data.  

Our binned scatterplots include fitted values from a linear prediction of y on x using the 

true and complete underlying data rather than binned data. We report, for example, coefficients 

from bivariate regressions of facilities’ arsenic discharges on the locations’ average 

marginalization index. We cluster all standard errors at the state-level to allow for arbitrary 

correlations across facilities in the same state. Presented p-values reflect tests of null hypotheses 

of no relationships against naive two-sided alternative hypotheses.   

 Second, we consider panel approaches. First, we run a first differences analysis where (for 

example) we regress a facility’s long-run change in pollution on the long-run change in the 

marginalization index for that facility’s neighborhood. We analyze two aggregate periods: an early 

 
22 Binned scatterplots were developed in Raj Chetty’s lab and are implemented using the ‘binscatter’ STATA 
command written by Michael Stepner with input from Jessica Laird and Laszlo Sandor. 
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period (2005-2007) and a late period (2011-2013). We assign census 2000 demographics to 

observations in the early period and census 2010 demographics to observations in the late period.23 

Thus, we regress the difference between the average 2011-13 pollution and average 2005-07 

pollution against the difference between 2010 and 2000 sociodemographic measures. We later 

consider robustness to alternate lag structures. 

We then run a facility-level fixed effects model using all annual pollution data. 24 Our main 

approach here assigns census 2000 demographics to each facility’s annual observations for 2005, 

2006, and 2007; census 2005 demographics to each facility’s annual observations from 2008, 

2009, and 2010; and census 2010 demographics to each facility’s annual observations from 2011, 

2012, and 2013. We later consider robustness to alternative lag structures.  

 Noting the equivalence of first differences and group-level fixed effects models when T=2, 

our baseline panel approaches have similar formal representations. For facility i in time period t, 

we regress pollution discharges on the recent lagged marginalization index for the local area, some 

controls, and plant-level fixed effects: 

[1]     𝑙𝑛ሺ𝑃𝑜𝑙𝑙𝑢𝑡𝑖𝑜𝑛ሻ𝑖𝑡 ൌ 𝛼𝑖 ൅ 𝛽 𝐿𝑎𝑔𝑔𝑒𝑑_𝑀𝑎𝑟𝑔𝑖𝑛𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑖𝑡 ൅ 𝑋𝑖𝑡𝛤 ൅ 𝛿𝑡 ൅ 𝜇𝑖𝑡 . 

δt represents year fixed effects. Controls X include a time-varying, plant-specific local population 

density measure. In [1], the aggregation and differencing approach defines time t over a combined 

early period and a combined late period, so t = 1,2. The fixed effects model with annual data 

defines time t over the 9 years spanning 2005-2013, so t = 1,2, …, 9.  

 
23 The aggregation procedure for pollution involves taking the arithmetic mean over all non-missing data for relevant 
years. The procedure is analogous to common empirical aggregations like converting monthly data to the annual-level.  
24 Advantages of the long-run aggregation and differencing approach include: it captures the fact that 
sociodemographics can be slow moving; the assignment of pollution to lagged demographics is intuitively appealing, 
interpretable, and involves few assumptions; and aggregating and averaging data over multi-year periods may alleviate 
some measurement error issues. Fixed effects panel approaches use all available data but interpretation (due to 
complex assignment between pollution and socio-demographics, etc.) is more nuanced. 
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Specifications with municipality-by-year fixed effects, for facility i in municipality m in 

time-period t, take the general form: 

[2]      𝑙𝑛ሺ𝑃𝑜𝑙𝑙𝑢𝑡𝑖𝑜𝑛ሻ௜௧ ൌ 𝛼௜ ൅ 𝛽 𝐿𝑎𝑔𝑔𝑒𝑑_𝑀𝑎𝑟𝑔𝑖𝑛𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛௜௧ ൅ 𝑋௜௧𝛤 ൅ 𝜏௠௧ ൅ 𝜇௜௧ , 

where τmt are municipality-by-year fixed effects. 

All panel analyses use common empirical practices. We log pollution since the underlying 

pollution distributions are restricted to the positive domain and heavily right skewed (Data 

Appendix). We cluster standard errors at the state-level to allow for arbitrary correlations across 

facilities in the same state. We test a null of β =0 against an alternative hypothesis that β > 0, given 

theoretical hypotheses and raw correlations predict positive relationships. We run all regressions 

of the form [1] separately for each of our seven contaminants. Our seven toxic heavy metals are 

recognized as individually dangerous and we aim to flexibly allow their health impacts, public 

perception, and awareness to differ. 

Finally, we explore evidence on mechanisms. For local renter housing share or 

municipality-level voter turnout Zi, regressions with interactions take the form: 25  

[3]  ln ሺ𝑃𝑜𝑙𝑙𝑢𝑡𝑖𝑜𝑛ሻ௜௧ ൌ 𝛼௜ ൅ 𝛽ଵ 𝐿𝑎𝑔𝑔𝑒𝑑_𝑀𝑎𝑟𝑔𝑖𝑛𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛௜௧ ൅ 𝛽ଶ 𝐿𝑎𝑔𝑔𝑒𝑑_𝑀𝑎𝑟𝑔𝑖𝑛𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛௜௧ ൈ 𝑍௜  

                                         ൅𝑋௜௧𝛤 ൅ 𝛿௧ ൅ 𝜇௜௧ .  

To explore evidence for sorting, we examine statistical relationships between pollution levels and 

time varying population turnover at the municipality-level. Ideal data for this purpose would 

represent individual-level migration flows data. Such data are unavailable in our setting. Given 

available data, we run univariate cross-sectional regressions of the percent of the population that 

was a resident of local municipality for at least five years on average pollution emissions in the 

 
25 Housing share is measured using 1km radii measures constructed from 2000 census data on the fraction of local 
housing that is renter occupied. Voter turnout data are from the 2006 presidential year at the municipality level from 
Mexico’s Federal Election Institute (IFE). Since these variables are time invariant, any independent effects on 
pollution are subsumed into the facility fixed effects α-i. 
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area. More precisely, we run first differences models with long-term resident measures as the 

dependent variables and lagged local pollution (in logs) as independent variables.26 We 

acknowledge that this analysis will not detect all types of Tiebout-style sorting. 

6. RESULTS 

6a. Relationships between toxic pollution releases and socio-demographics 

Figure 3 presents binned scatterplot results for pollution (in kilograms) plotted against the 

distribution of the local marginalization index. Results show visually that toxic water pollution 

discharges are strongly associated with the marginalization index for all seven toxic water 

pollutants. Although we defer interpretation until later analysis, we note that positive associations 

between pollution and marginalization are typically large in magnitude and statistically significant 

at conventional levels. We reject the null of no relationship between pollution discharges and 

marginalization at α < 10 percent for cadmium, chromium, lead, arsenic, cyanides, and mercury.  

 Figure 4 presents the binned scatterplot results for pollution (in kilograms) plotted against 

the distribution of the indigenous race measure. Graphical results suggest associations between 

discharges and indigenous race may be possible for some contaminants, but relationships are 

inconsistent. Associations between pollution and race are not statistically significant at 

conventional levels and all slope coefficients on the conditional expectation functions are small in 

magnitude. We fail to reject a null of no relationship between pollution discharges and indigenous 

race α < 10 percent for all studied pollutants. Since Figure 4 documents no consistent baseline 

correlations between pollution and race, we omit race outcomes from the analysis that follows. 27 

 
26 To do so, our first differences model maintains an internally consistent lag structure by regressing the 2000 vs. 2010 
change in share of residents residing in the municipality for at least 5 years on the 2005-07 on the 2008-10 change in 
pollution (and controls).  
27 We replicated all analyses with indigenous race as an explanatory variable (both with and without marginalization 
variables) and continued to find null results. Minimum detected effect sizes were typically small; we are powered.  
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Table 1 presents main regression results for associations between pollution discharges and 

local marginalization. Panel A summarizes key results from the aggregation and differencing 

approach to equation [1]. Panel B presents results from our annual data and fixed effects approach 

to equation [1]. Panel C presents results from specifications with municipality by year fixed effects 

of the form of equation [2].  

In Table 1, Panel A, we reject the null of no relationship between changes in pollution and 

changes in marginalization at α < 10 percent for cadmium, chromium, cyanides, lead, mercury, 

and nickel. We fail to reject a null of no relationship for arsenic at or near conventional levels. In 

Panel B, we reject the null of no relationship between changes in pollution discharges and changes 

in marginalization at α < 10 percent for cadmium, chromium, cyanides, lead, mercury, and nickel. 

Again, we fail to reject a null of no relationship for arsenic at or near conventional levels. In Panel 

C, we reject a null of no relationship at α < 10 percent for all seven pollutants.  

It is illustrative to consider the variability of main results to empirical approach. For 

consistency, we treat the results in Panel B, from regressions on the full dataset and including 

facility and year fixed effects, as our baseline specifications. Coefficients, which we interpret 

further below, from these specifications are: As: .12, Ca: .26, Cr: .24, CN-:.28, Pb: .18, Hg: .33, 

Ni: .29. Coefficients from first-differences models are: As: .17, Ca: .20, Cr: .28, CN-:.32, Pb: .32, 

Hg: .38, Ni: .29. Results are statistically similar, although first-differences results are less precisely 

estimated, which is not surprising ex-post given they draw on less data. Coefficients from models 

with municipality-by-year fixed effects are systematically larger: As: .36, Ca: .57, Cr: .53, CN-

:.45, Pb: .21, Hg: .29, Ni: .41.  

The relationships between (changes in) pollution and (changes in) marginalization 

documented in Table 1 are practically large in magnitude. Interpreting the point estimates in Panel 
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B, while noting log-linear specifications and σmarg. = 1.17, reveals that a 1 standard deviation 

increase in the marginalization index for the neighborhood around a facility results in: a 14.5% 

increase in arsenic discharges, a 29.8% increase in cadmium discharges, a 27.6% increase in 

chromium discharges, a 33.2% increase in discharges of cyanides, a 20.9% increase in lead 

discharges, a 39.1% increase in mercury discharges, and a 33.9% increase in nickel discharges.  

Direct comparison of results with other studies is challenging since few studies consider 

environmental disparities for toxic water pollution. Papers exploring other environmental 

disparities typically use different measures and metrics of marginalization. Nevertheless, we can 

directly compare some of our results to those identified in Chakraborti and Margolis (2017). 28 

Relative to that paper, we study relationships between pollution and race. We also exploit the panel 

nature of the data to better understand relationships between pollution and marginalization. 

Chakraborti and Margolis (2017)’s cross-sectional findings imply that a one standard deviation 

increase in marginalization around a facility results in a ~ 40%, 20%, 40%, 49%, 24%, 27%, and 

23% increase in discharges of As, Cd, Cr, CN-, Pb, Hg, and Ni respectively. Our panel data 

estimates suggest that a one standard deviation increase in marginalization around a facility results 

in a ~ 15%, 30%, 28%, 33%, 21%, 39%, and 34% increase in discharges of As, Cd, Cr, CN-, Pb, 

Hg, and Ni respectively. As such, we find differences in coefficient magnitudes of 13 to 63 percent 

between the two studies, depending on contaminant. Another innovation relative to Chakraborti 

and Margolis (2017) is that – later in this section – we consider the economic mechanisms that 

may drive the positive relationships documented in both studies. 

6b. Robustness  

 
28 Chakraborti and Margolis (2017) report results as the effect of a 1-unit increase in the marginalization index, but 
these results can be standardized for comparison to the present study. Chakraborti and Margolis (2017) run analyses 
for three independent snapshots in time but report that preferred results use pollution data from 2011-2013 and 
marginalization data from 2010. 
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We explored robustness to defining local neighborhood using 0.5km and 1.5km radii for 

sociodemographics in place of the 1km radius. Although the 1km radius is common in the 

literature, we acknowledge that it is somewhat arbitrarily chosen. For all pollutants, cross-sectional 

associations remain similar in terms of empirical magnitudes and statistical significance across 

0.5km, 1km, and 1.5km radii (Appendix Tables 1 and 2). Panel data results are more sensitive to 

empirical choices. For perspective, panel regressions with 0.5, 1, and 1.5km radii yield 

coefficients: As: .08, .12, -.02; Ca: .25, .26 .12; Cr: .20, .24, .10; CN-:.25, .28, .17; Pb: .18, .18, 

.09; Hg: .35, .33, .18; Ni: .29, .29, .17. Panel data point estimates are statistically indistinguishable 

between 0.5km and 1km radii, although the 1km results are estimated more precisely. Panel results 

from the 1.5km radii analyses are smaller in magnitude and statistically noisier, but relationships 

between pollution and marginalization generally remain positive (the exception is arsenic). One 

possible explanation for smaller and less significant estimates at 1.5km radii is that toxic water 

pollution is highly localized and often difficult to observe. As such, after some threshold, greater 

radii simply add noise because relationships of interest do not extend far beyond the facility 

location (i.e. the clearly observable component of pollution in this context).   

We estimated the panel data models with alternative lags for socioeconomic data. Our main 

first difference model assigns 2005-2007 pollution data to census 2000 and 2011-2013 pollution 

data to census 2010 data. We replicated the first difference model assigning 2005-2007 pollution 

data to census 2000 socioeconomic data and 2011-2013 pollution data to roughly symmetric 

census 2005 socioeconomic data (Appendix Table 3A). Our main panel models assign pollution 

data from 2005-2007, 2008-2010, and 2011-2013 to 2000, 2005, and 2010 census data. We 

replicated the panel analyses (with and without municipality-by-year fixed effects) assigning 

pollution data from 2005-2009 to census 2000 socioeconomic data and 2010-2013 pollution data 
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to roughly symmetric census 2005 socioeconomic data (Appendix Table 3B and 3C). We replicated 

the panel analysis assigning pollution data from 2005-2009 to census 2000 data and assigning 

pollution data from 2010-2013 to census 2010 data, rather than using any data from the 2005 

conteo census (Appendix Table 4). Finally, we replicated the analysis using a full panel with annual 

sociodemographic data imputed to the year from 2000, 2005, and 2010 census data (Appendix 

Table 5). In all cases, results for Cd, Cr, CN, Pb, Hg, and Ni were statistically indistinguishable 

from the results in Table 1. Coefficient magnitudes were practically similar or smaller. The 

possible exception is coefficients on arsenic, which appear sensitive to specification here and 

elsewhere. For perspective, in our main analysis, panel regressions yield coefficients: As: .12, Ca: 

.26, Cr: .24, CN-:.28, Pb: .18, Hg: .33, Ni: .29. With linear interpolation, analogous panel 

regressions yield coefficients: As: .06, Ca: .22, Cr: .21, CN-:.23, Pb: .23, Hg: .31, Ni: .24. 

 We considered alternative fixed effects structures. For perspective, in our main analysis, 

panel regressions yield coefficients: As: .12, Ca: .26, Cr: .24, CN-:.28, Pb: .18, Hg: .33, Ni: .29. 

We considered naïve models without facility-level fixed effects (Appendix Table 6). With the 

exception of arsenic, relationships between pollution and marginalization generally remain 

positive but magnitudes are small. We considered panel models with state-by-year fixed effects 

instead of municipality-by-year fixed effects (Appendix Table 7A). With state-by-year fixed 

effects, panel regressions yield coefficients: As: .26, Ca: .35, Cr: .39, CN-:.32, Pb: .27, Hg: .40, 

Ni: .40. For all contaminants, point estimates remain positive and significant but magnitudes are 

systematically larger than our main results. We considered panel models with industry-by-year 

fixed effects (Appendix Table 7B). Coefficient magnitudes are generally similar to main results. 

With industry-by-year fixed effects, panel regressions yield coefficients: As: .09, Ca: .23, Cr: .23, 

CN-:.30, Pb: .15, Hg: .32, Ni: .26. 
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Taken as a whole, robustness to model specification suggests insights into identification. 

Results from baseline models with facility-level fixed effects or first differences are economically 

and statistically similar to one another but systematically larger than naïve models without facility-

level fixed effects. As such, time invariant omitted variables correlated with pollution and 

marginalization at the facility-level may bias relationships between pollution and marginalization 

downwards towards zero. Industry-by-year fixed effects appear to offer few additional 

contributions to identification on average, relative to models with facility-level fixed effects. 

Results from models with state-by-year and especially municipality-by-year fixed effects are 

economically larger than baseline results on average, suggesting that (1) omitted time-varying 

trends common to all facilities within a specific geographic area may bias relationships between 

pollution and marginalization downwards to zero, and (2) baseline results are unlikely to be 

overestimated due to sorting based on average differences or common trends in pollution across 

municipalities or states. 

6c. Mechanistic exploration results 

Figure 5 and Table 2 (Panels A and B) summarize results of interaction effects relevant to 

community pressure and Coasian bargaining mechanisms. We find consistent evidence that 

relationships between pollution and marginalization are stronger in areas with lower shares of 

housing that are renter occupied. To put the results in Figure 5 in context, we find that poverty and 

pollution are unrelated when the fraction of housing that is renter occupied tops the ~80th percentile 

of the measure. In contrast, a 1 standard deviation increase in marginalization leads to a ~40 to 80 

percent increase in toxic pollution discharges when the fraction of housing that is renter occupied 

falls below its ~5th percentile of the measure. 

 To the extent that community pressure and bargaining are channels influencing 



28 
 

relationships between pollution and marginalization, one expects a significant interaction effect as 

noted in earlier empirical prediction (EP1). However, at first blush, the sign on the interaction 

coefficient may seem counterintuitive. In the related literature from high income countries (Ash 

and Fetter 1994; Rohe and Stewart 1996), areas with low shares of renting and high shares of home 

ownership are associated with greater community activism. However, in Mexico, “rentals tend to 

be a solution that becomes more common where land markets are more mature and property rights 

are better enforced, so that land occupation and informal housing becomes less of an option” (Fay 

and Wellenstein 2005, pg. 92).29  

Figure 6 and Table 2 (Panels C and D) summarize results of interaction effects relevant to 

public political engagement mechanisms. We find no statistical evidence that relationships 

between pollution and marginalization are moderated by voter turnout - the prediction of (EP2). 

Increases in pollution are associated with increases in marginalization, but we regularly fail to 

reject a null that voter turnout does not influence the strength of the pollution-marginalization 

relationship for any of our seven toxic water pollutants. Our one statistically significant effect (at 

the 10 percent level) has the opposite sign of expectations.  

Table 3 summarizes results of direct explorations relevant to amenity-based sorting and 

“moving to the nuisance.” For all seven pollutants, we fail to reject a null of no relationship 

between the average pollution emissions in the area and the percent of the population that was a 

resident of local municipality for at least five years. Although more marginalized areas generally 

experience less population turnover, areas experiencing more pollution or larger changes in 

 
29 In Mexico, homeownership is generally high among the urban poor (Fay and Wellenstein 2005). In our sample, 
marginalization is negatively correlated with shares of the population renting (Data Appendix). Survey data suggest 
that households that rent in Mexico are younger on average (Fay and Wellenstein 2005). One natural concern, then, 
is that the detected moderating role that the share of renter occupancy plays in the pollution-marginalization 
relationships may be picking up age as an omitted factor. We ran regressions with interaction effects defined by the 
share of the adult population over 60. We fail to detect consistent evidence that this age measure influences 
relationships between pollution and marginalization. 



29 
 

pollution over time do not experience greater changes in the fraction of population that represents 

long-term residents of the municipality. The failure to reject is robust across specifications. 

Although we fail to find evidence consistent with residential sorting or “moving to the 

nuisance” empirical predictions (EP3), we acknowledge that our data are imperfect for the task. 

Our lack of evidence contrasts with a related literature that often does find evidence consistent 

with sorting. However, the existing evidence on sorting or willingness to pay for environmental 

improvements comes largely from high income settings (Been 1994; Been and Gupta 1997; 

Banzhaf and Walsh 2008; Gamper-Rabindran and Timmins 2011, and Currie et al. 2015) and/or 

settings with visible or well-publicized disamenities like air pollution and extractive industry 

installations (Rodríguez-Sánchez 2014, Rivera 2020). We have little evidence on public 

perceptions of ambient water pollution in less developed countries (Chowdhury et al. 2016), save 

for a few cases of large environmental catastrophes (Aragones et al. 2017). Toxic water pollution 

is typically odorless and invisible to the naked eye, and Mexican agencies rarely disseminate 

information on water toxics to the public (Montes 2018). The limited research suggests awareness 

of ambient toxic water pollution is likely low in less developed countries (Chakraborti et al. 2010; 

Robles-Morua et al. 2011; Fisher et al. 2017). Although drinking water assessments are somewhat 

more common, they remain infrequent or nonexistence in all but the largest metropolitan areas of 

Mexico. It is at least plausible that residential sorting attributable to toxic water pollution is limited. 

7. DISCUSSION AND CONCLUSION 

In this paper, we document marked relationships between marginalization and toxic water 

pollution discharges in urban Mexico. A one standard deviation increase in a neighborhood’s 

marginalization score is associated with a roughly 15-40 percent increase in arsenic, cadmium, 

chromium, cyanides, lead, mercury, and nickel discharges from nearby industrial facilities. In 
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contrast, we fail to reject a null hypothesis of no relationship between indigenous race and 

industrial toxic water pollution discharges in urban Mexico. Although this latter result contrasts 

with the modal result from the related rich country literature, race in Mexico differs from U.S. and 

European contexts.30 A cautionary note for interpretation is that indigenous populations in Mexico 

are concentrated and many indigenous subpopulations live outside of the urban areas considered 

in this study (INEGI 2009).    

We investigate economic mechanisms driving the detected relationships between pollution 

and local marginalization. We find evidence consistent with community pressure and Coasian 

bargaining mechanisms (M1) driving observed environmental disparities in urban Mexico. In this 

sense, our mechanistic evidence complements insights from an earlier literature detailing the 

importance of “informal regulation” in low- and middle- income countries (Pargal and Wheeler 

1996). One contribution of this paper is to highlight implications of this “informal regulation” for 

environmental disparities. In contrast to community pressure and bargaining channels, we find 

limited evidence consistent with public politics (M2) or amenity-based sorting mechanisms (M3).  

We note caveats. First, we are only able to observe local socio-demographic data for urban 

areas. The results of this study do not necessarily apply to rural areas. Second, we observe 

industrial toxic water pollution discharges. We do not observe ambient water quality. Our results 

are conditional on the presence of an industrial facility, and we do not compare pollution 

discharges between areas with and without industrial facilities. Third, we are unable to fully 

confirm the accuracy of reported discharges. We explore data quality in detail in the Data 

Appendix, but several unknowns persist. Fourth, our empirical design may not fully isolate 

 
30 Social distinctions concerning race and ethnicity in Mexico are functions of phenotype, ancestry, language, and 
other factors (Telles 2014). Indigenous populations have varied ethnic and cultural histories, and the nature and 
strength of racial identity varies decidedly across space and over time. 
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causality. Although our panel data estimates are net of many types of residential sorting, it remains 

possible that sorting attributable to localized deviations from municipal trends in pollution could 

influence identification. In this case, our panel estimates may overstate the true influence of 

marginalization on industrial facilities’ toxic water pollution discharges. Some very specific forms 

of localized time varying omitted variables could also influence results interpretation. Finally, our 

mechanistic explorations are descriptive. Our mechanism proxies may be correlated with other 

factors. Our proxies are also imperfect. For example, municipality-level proxies for investigating 

sorting fall short of individual-level migration flows data ideally suited for the purpose at hand. 

The above caveats notwithstanding, we believe our results, taken as a whole, have 

implications for scholarship and policy. Regarding research, we still have relatively limited 

systematic empirical evidence on the causes and consequences of environmental inequality in low- 

and middle-income countries. Ideally, future studies would carry our line of inquiry further to 

better record and illuminate mechanisms, population differences in exposure to harms to health, 

and avoidance behaviors. Regarding policy, our results suggest a direct role for corrective 

environmental policies to address disparities in exposure to toxic water pollution discharges in 

urban Mexico.31 In cases common to the literature - where reductions in harm from salient and 

visible disamenities like air pollution and extractive industry installations may lead to higher rents 

and home prices, amenity-based sorting, and “environmental gentrification” - corrective policies 

may disproportionately benefit advantaged populations and ultimately fail to address disparities 

(Sieg et al. 2014; Grainger 2012; Banzhaf 2012). In cases where sorting may not be a dominant 

mechanism, like largely invisible and infrequently publicized toxic water pollution in Mexico, 

corrective policies targeting specific polluting facilities may help reduce disparities.  

 
31 We acknowledge that formal environmental regulation in low- and middle- income countries faces challenges 
(Greenstone and Jack 2015). 
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Fig. 1. Map of sample facilities. Our 1,631 sample industrial facilities span urban areas across all 
of Mexico. Clusters occur in or near Mexico City (Distrito Federal), Guadalajara / Zapopan, 
Puebla, Reynosa / Matamoros, Juarez, Tijuana, Monterrey, San Luis Potosi, and Aguascalientes. 
 

 
   



 
 
 

 
Fig. 2. Trends in toxic releases into water, by pollutant. We standardize pollution discharges in 
the usual way (subtract out the mean and divide by the standard deviation) in order to present all 
seven pollutants in the same figure. Pollutants co-move. Reported pollution is increasing over time 
(although not monotonically). 
 
   



 

 

 
Fig. 3. Binned scatter plots: pollution vs. 
marginalization. We document positive 
associations between facilities’ local area 
marginalization scores and toxic pollution. 
Binned scatterplots summarize relationships 
and non-parametrically represent conditional 
expectation functions when the underlying 
datasets are too large for visualizing full 
scatterplots. Fitted value regression lines are 
based on the true underlying data, not on the 
binned data. Slope coefficients and p-values 
are overlaid on the figure for each pollutant.  

 



 

 

 
Fig. 4. Binned scatter plots: pollution vs. 
indigenous race. We fail to reject a null of 
no association between facilities’ local area 
racial composition and toxic pollution. 
Binned scatterplots summarize relationships 
and non-parametrically represent conditional 
expectation functions when the underlying 
datasets are too large for visualizing full 
scatterplots. Fitted value regression lines are 
based on the true underlying data, not on the 
binned data. Slope coefficients and p-values 
are overlaid on the figure for each pollutant.  

 



 

 

 
 
Fig. 5. Renter-occupied housing as 
moderator of pollution - marginalization 
relationships. The graphs display the effect 
of marginalization on pollution at various 
points in the distribution of renter-occupied 
housing shares. Although pollution increases 
with marginalization (dy/dx > 0), the 
relationship between pollution and poverty is 
stronger in areas with lower shares of 
housing that are renter occupied (statistically 
so for the majority of pollutants).  

 
 



 

 

 
 
Fig. 6. Voter turnout as a moderator of 
pollution - marginalization relationships. 
The graphs display the effect of 
marginalization on pollution at various 
points in the distribution of voter turnout. 
Although pollution increases with increased 
marginalization (dy/dx > 0), voter turnout 
does not influence the strength of the 
relationships.  

 
 
 



Table 1. Main Results: Pollution vs. marginalization 
Panel A: Panel regressions: First differences, facility by period data 

DEP.VAR: The log of: As Cd Cr CN- Pb Hg Ni 
        

Marginalization Index 0.17 0.20* 0.28* 0.32** 0.32** 0.38** 0.29** 
 (0.14) (0.15) (0.17) (0.14) (0.17) (0.15) (0.14) 
        

Population density X X X X X X X 
Facility FE X X X X X X X 
        
# observations 779 758 757 783 845 716 869 

Panel B: Panel regressions: Full panel, facility by year data 
DEP.VAR: The log of: As Cd Cr CN- Pb Hg Ni 

        
Marginalization Index 0.12 0.26** 0.24* 0.28** 0.18* 0.33** 0.29** 

 (0.11) (0.14) (0.15) (0.10) (0.12) (0.12) (0.12) 
        

Population density  X X X X X X X 
Year FE X X X X X X X 
Facility FE X X X X X X X 
        
# observations 4,250 4,116 4,148 4,277 4,470 4,033 4,483 

Panel C: Full panel regressions, municipality with year interactions 
DEP.VAR: The log of: As Cd Cr CN- Pb Hg Ni 
        
Marginalization Index 0.36** 

(0.16) 
0.37** 
(0.22) 

0.53** 
(0.27) 

0.45** 
(0.15) 

0.21* 
(0.16) 

0.49** 
(0.18) 

0.41** 
(0.19) 

        
Population density  X X X X X X X 
Municipality X Year FE X X X X X X X 
Facility FE X X X X X X X 
        
# observations 4,250 4,116 4,148 4,277 4,470 4,033 4,483 
        

NOTES: Each column reports slope coefficients from a panel regression with toxic water pollution 
discharges (in logs) as the dependent variable and standard errors clustered at the state level. In all 
regressions, the independent variable of interest is the time varying marginalization index for the 1km radius 
around the facility. Facility-level fixed effects and time fixed effects are estimated but not presented. ** 
p<0.05, * p<0.10 for one-sided tests. In Panel A, we run a first difference model with two time periods, an 
aggregated early period representing 2005-2007 and an aggregated late period representing 2011-2013. In 
Panel B, we run a standard facility-by-year panel model with facility-level fixed effects. In Panel C, we 
include municipality interacted with year fixed effects to account for time varying factors within 
municipalities in particular sorting within municipalities based on annual changes in pollution. 
 

 
 

  



Table 2. Renter shares and voter turnout as moderators of the pollution-marginalization 
relationship 

 
Panel A: Interactions w/ Share of Housing Renter Occupied. First differences, facility by period data. 

DEP.VAR: The log of: As Cd Cr CN- Pb Hg Ni 
Marginalization Index  0.473** 0.576** 0.488** 0.685** 0.566** 1.058** 0.748** 

 (0.132) (0.261) (0.233) (0.190) (0.233) (0.268) (0.228) 
Marginalization ×  
   Renter share 
 

-0.017** 
(0.006) 

-0.020+ 

(0.012) 
-0.011 
(0.010) 

-0.020** 
(0.009) 

-0.013* 
(0.007) 

-0.036** 
(0.013) 

-0.025** 
(0.008) 

# observations 771 752 749 776 839 710 861 
Panel B: Interactions w/ Share of Housing Renter Occupied. Full panel, facility by year data. 

DEP.VAR: The log of: As Cd Cr CN- Pb Hg Ni 
Marginalization Index  0.368** 0.179 0.319+ 0.459** 0.310+ 0.612** 0.544** 

 (0.164) (0.224) (0.211) (0.155) (0.233) (0.230) (0.178) 
Marginalization ×  
   Renter share 
 

-0.016* 
(0.009) 

0.004 
(0.009) 

-0.005 
(0.011) 

-0.011+ 

(0.008) 
-0.008 
(0.011) 

-0.018+ 

(0.011) 
-0.015+ 
(0.009) 

# observations 4,211 4,079 4,107 4,236 4,431 3,995 4,438 
Panel C: Interactions w/ Voter Turnout. First differences, facility by period data. 

DEP.VAR: The log of: As Cd Cr CN- Pb Hg Ni 
Marginalization Index  0.701 0.463 -0.255 0.082 -0.458 1.058+ 0.564 

 (0.688) (0.945) (0.581) (0.788) (1.129) (0.679) (0.529) 
Marginalization ×  
   Voter Turnout 

-0.009 
(0.011) 

-0.004 
(0.015) 

0.009 
(0.010) 

0.004 
(0.013) 

0.013 
(0.018) 

-0.011 
(0.010) 

-0.005 
(0.009) 

        
# observations 775 754 751 775 839 712 865 

Panel D: Interactions w/ Voter Turnout. Full panel, facility by year data. 
DEP.VAR: The log of: As Cd Cr CN- Pb Hg Ni 

Marginalization Index  0.933 0.675 -0.048 0.454 -0.059 1.708** 1.018** 
 (0.911) (0.584) (1.002) (0.751) (0.762) (0.740) (0.485) 

Marginalization ×  
   Voter Turnout 

-0.013 
(0.015) 

-0.007 
(0.009) 

0.005 
(0.016) 

-0.003 
(0.012) 

0.004 
(0.012) 

-0.023* 
(0.012) 

-0.012+ 
(0.008) 

        
# observations 4,221 4,087 4,122 4,241 4,436 3,999 4,456 

Notes: Regressions include population density (time-varying), facility FEs, and time FEs. Standard errors 
clustered at the state level. ** p<0.05, * p<0.10, + p<0.20 for two-sided tests. The coefficient on 
marginalization (uninteracted) represents the effect of marginalization holding the interacted socio-
demographic measure at 0, which may or may not have economic or practical content (e.g., the supports of 
our renter share and vote share don’t approach 0). 
 
 
 
  



 
Table 3. Sorting: Relationships between pollution and population turnover 

        
Panel A: OLS Regressions of long-term residents on pollution 

        
DEP.VAR:  % of local residents residing in the municipality for at least 5 years 

 (As) (Cd) (Cr) (CN-) (Pb) (Hg) (Ni) 
        

Pollution (levels)  0.006 -0.000 -0.001 -0.005 -0.000 -0.007 -0.001 
 (0.009) (0.003) (0.001) (0.006) (0.001) (0.033) (0.001) 
        

# observations 1,428 1,413 1,424 1,439 1,478 1,414 1,478 
Panel B: OLS Regressions of long-term residents on pollution and marginalization 

        
DEP.VAR:  % of local residents residing in the municipality for at least 5 years 

 (As) (Cd) (Cr) (CN-) (Pb) (Hg) (Ni) 
        

Pollution (levels)  0.003 -0.001 -0.001 -0.006 -0.000 -0.011 -0.001 
 (0.009) (0.003) (0.001) (0.006) (0.001) (0.034) (0.001) 

Marginalization Index 2.033** 2.098** 2.056** 2.072** 1.994** 1.952** 2.084** 
 (0.819) 

 
(0.830) (0.824) (0.869) (0.838) (0.865) (0.832) 

# observations 1,428 1,413 1,424 1,439 1,478 1,414 1,478 
Panel C: First differences regressions, facility by period data 

        
DEP.VAR: % of local residents residing in the municipality for at least 5 years 

 (As) (Cd) (Cr) (CN-) (Pb) (Hg) (Ni) 
        

Pollution (logs)  0.030 -0.004 -0.090 -0.080 -0.097 -0.014 -0.067 
 (0.056) (0.040) (0.058) (0.053) (0.075) (0.047) (0.047) 
        

Population density X X X X X X X 
        
Year FE X X X X X X X 
        
Facility FE X X X X X X X 
        
# observations 1,004 958 980 1,042 1,052 946 1,058 

NOTES: Each column reports coefficients from regressions with the share of local residents residing in the 
municipality for at least 5 years as the dependent variable and standard errors clustered at the state level. In 
all regressions, the independent variable of interest is the time varying log of pollution discharges. The 
difference across the columns is that log pollution applies to discharges of As, Cd, Cr, CN-, Pb, Hg, and 
Ni, respectively. In Panels A and B, a constant is included in each regression. ** p<0.05, * p<0.10 for two-
sided tests. In Panels A and B, we regress cross-sectional long-run resident share averaged over all census 
periods for each facility on cross-sectional pollution averaged over all annual periods for each facility (and 
controls). In Panel C, we regress the change in long-run resident share between 2000 and 2010 for each 
facility on the change in pollution between a 2005-2007 aggregate period and a 2008-2010 aggregate period 
for each facility (and controls). We lack the data to replicate a full annual panel analysis with the share of 
local residents residing in the municipality for at least 5 years as the dependent variable. 
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Data Appendix Table. In-Sample vs. Out-of-Sample facilities 
 

 Out of Sample 

Facilities 

In Sample 

Facilities 
Difference p-value 

     
INDUSTRY     
Automotive 0.10 0.10 -0.00 0.65 
Chemicals 0.23 0.31 -0.08 0.00 
Electronics 0.04 0.07 -0.03 0.00 
Energy 0.04 0.01 0.03 0.00 
Food 0.07 0.07 -0.01 0.48 
Metals 0.17 0.16 0.01 0.42 
Other 0.22 0.16 0.05 0.00 
Petroleum 0.07 0.04 0.03 0.00 
Concrete 0.04 0.04 -0.00 0.74 
Wood 0.03 0.04 -0.01 0.40 
     
REGION     
Center 0.27 0.39 -0.12 0.00 
Northeast 0.32 0.31 0.00 0.83 
Northwest 0.06 0.05 0.01 0.21 
South 0.07 0.05 0.01 0.11 
Southeast 0.10 0.02 0.07 0.00 
West 0.19 0.17 0.02 0.18 
     
POLLUTION (kg)     
Arsenic (As) 5.44 3.17 2.27 0.03 
Cadmium (Cd) 13.46 9.45 4.01 0.18 
Chromium (Cr) 30.23 30.11 0.13 0.99 
Cyanide (CN-) 8.43 7.10 1.33 0.42 
Lead (Pb) 39.42 35.80 3.62 0.69 
Mercury (Hg) 1.42 0.74 0.68 0.02 
Nickel (Ni) 58.81 38.86 19.95 0.08 
     

NOTES: Values for in-sample facilities are the same as those in Table 1. Relative to non-sample facilities, sample 
facilities are more likely to be in the chemicals and electronics sectors and less likely to be in the energy and petroleum 
industries. Sample facilities are more likely to be in the central region and less likely to be in the Southeast region. 
Sample facilities have lower average discharges of As and Hg. However, average discharges of Cd, Cr, CN-, Pb, and 
Ni are statistically indistinguishable between sample and non-sample facilities. 



 

Data Appendix Table. Cross-sectional Summary Statistics 
 

 Facilities Mean Std. Dev. Max. 
INDUSTRY     
Automotive 1,631 0.10 0.31 1.00 
Chemicals 1,631 0.31 0.46 1.00 
Electronics 1,631 0.07 0.25 1.00 
Energy 1,631 0.01 0.09 1.00 
Food 1,631 0.07 0.26 1.00 
Metals 1,631 0.16 0.37 1.00 
Other 1,631 0.16 0.37 1.00 
Petroleum 1,631 0.04 0.20 1.00 
Concrete 1,631 0.04 0.19 1.00 
Wood 1,631 0.04 0.19 1.00 
     
REGION     
Center 1,631 0.39 0.49 1.00 
Northeast 1,631 0.31 0.46 1.00 
Northwest 1,631 0.05 0.22 1.00 
South 1,631 0.05 0.22 1.00 
Southeast 1,631 0.02 0.15 1.00 
West 1,631 0.17 0.38 1.00 
     
SOCIO-DEMOGRAPHICS     
Marginalization Index 1,631 -0.76 0.87 3.50 
% not attending school 1,631 4.12 1.94 35.63 
% no access to healthcare 1,631 34.75 11.09 75.87 
% without sanitary drainage 1,631 6.01 10.36 96.97 
% without piped water 1,631 19.92 19.49 100.00 
% without refrigerator 1,631 13.11 11.31 84.78 
% in overcrowded housing 1,631 21.68 10.76 71.81 
% indigenous language 1,625 1.21 1.66 30.87 
% renter occupied housing 1,542 19.72 11.05 100.00 
% local municipality residents 1,620 89.72 5.97 97.98 
Child mortality rate 1,631 3.28 1.16 10.57 
Population Density 1,631 7.11 5.17 28.70 
     
POLLUTION (kg)     
Arsenic (As) 1,439 3.17 20.31 502.00 
Cadmium (Cd) 1,424 9.45 65.59 1,445.21 
Chromium (Cr) 1,435 30.11 199.45 4,305.57 
Cyanide (CN-) 1,450 7.10 46.60 883.01 
Lead (Pb) 1,489 35.80 253.15 4,540.00 
Mercury (Hg) 1,425 0.74 5.10 119.29 
Nickel (Ni) 1,489 38.86 221.51 4,653.54 
     

NOTES: Industry and location values are time invariant. To create the cross section for the other variables, we collapse by 
taking means for i over all t with non-missing values. For socio-demographics, this typically involves averaging over the 
2000, 2005, and 2010 censuses. For pollution, this involves averaging over annual data 2005-2013. Not every facility 
pollutes all 7 toxic pollutants. As consequence, the number of reporting facilities for any given contaminant in the Table 
does not equal the full 1,631 sample size. 

 
 
  



ADDITIONAL DATA NOTES 
 
 

Plant locations 

The industrial facilities in our sample are located in highly urbanized areas. Even after restricting 

the analysis to only urban AGEBs, comparisons of plant locations suggest that areas within a 1km 

radius of our sample facilities have higher population density (roughly 50% more persons per 

square km), lower marginalization, and less racial variability than the less urbanized areas more 

than 1km from sample facilities. We present summary statistics in the Table below. 

Data Appendix Table. Plant locations vs. non-plant locations, urban AGEBs only 
 

2010 demographics Within 1km of a sample plant Outside 1km of a sample plant 
Marginalization Index  -.59 .02 
Population Density 9,362 6,188 
Race 1.24 5.22 

 
 
  



Additional graphs and summary statistics for pollution 
 
As the figure below illustrates, the underlying pollution distributions are restricted to the positive 
domain and heavily right skewed 
 
Data Appendix Figure. Probability Distribution Functions, by pollutant, in logs. 
 

 
 
Notes. Untransformed pollution is restricted to the positive domain and heavily skewed to the right. After logging 
pollution discharges, distributions are approximately normal. Means slightly less than one correspond to median 
untransformed pollution discharges slightly less than 1kg.  
 
  



Marginalization Index Components 
 
 Variables making up the marginalization index, depending on the census year, may 

include: population earning less than 2x minimum wage; population 6-14 years old not attending 

school; population over 15 without post-primary education; population over 15 without secondary 

education; household without piped water; household without septic connection; household 

without adequate drainage; household with mud floor; household without refrigerator; household 

without adequate roofing; household with overcrowding; child mortality rates; population without 

access to basic health services; teenage births; and other measures. The individual components 

determining the score may vary from year to year. In principle, this means that the index always 

“ranks” local area marginalization appropriately in any given time period but the index values may 

not be fully comparable across time. In practice, this technical detail is not important for our 

analysis. Results are robust to using raw CONAPO marginalization indexes or our own 

marginalization “scores” calculated using CONAPO methods applied to the individual census 

questions. Results are robust to using individual wealth measures rather than a summary index. 

Our panel analyses include time fixed effects which net out average differences common to all 

cross-sectional units and implicitly rescale the marginalization index for each period. 

  



Data Appendix Figure. Trends in the components of the marginalization index over time 
 

 
 
 As noted in the figure, most components of marginalization are decreasing (improving) 

over time, although non-monotonically, including: population ages 6-14 not attending school; 

households without piped water; households without a refrigerator; mortality rates; and 

population without access to basic health services. In contrast, households with overcrowding are 

increasing over time in our sample. 

  



Marginalization and Renter Occupied Housing 
 
 Empirically, in our sample, marginalization is negatively correlated with rental rates. As 

noted in the figure below, the correlation coefficient between marginalization and the share of 

renter occupied housing is -0.27. The figure documents that locations with very high 

marginalization have very low shares of renter occupied housing and that areas with above median 

shares of renter occupied housing are associated with low marginalization on average. 

Data Appendix Figure. Scatterplot of marginalization vs. the share of renter housing 
 

 
 
  



Defining administrative locations 
 
 We use latitude and longitude to establish administrative locations like AGEB (of 

>50,000), municipality (of >2,000), state (of 32), and region (of 6).  In the 2000s, Mexico had 

~2350 municipalities with an average size of ~800 square kilometers and a population of ~47,000 

people. Mexico had 32 states (including Distrito Federal, or Mexico City) with an average size of 

~60,000 square kilometers and a population of 3.5 million people. We also aggregate Mexican 

states into 6 regions: northwest (Baja California, Baja California Sur, Sinaloa, Sonora); west 

(Aguascalientes, Colima, Guanajuato, Jalisco, Michoacan, Nayarit, Queretaro); center (Distrito 

Federal, Mexico, Hidalgo, Morelos, Puebla, Tlaxcala); south (Guerrero, Oaxaca, Chiapas, 

Veracruz); Southeast (Campeche, Quintana Roo, Tabasco, Yucatan); and Northeast (Coahuila, 

Nuevo Leon, Tamaulipas, Chihuahua, Durango, Zacatecas, and San Luis Potosi). 

 
 
  



MISSING DATA 
 

RETC pollution data do not comprise a “square” dataset, and many facility-by-year 

pollution values are missing. Roughly 20% of missing values are attributable to plants that never 

report on a given contaminant for the entire sample. For example, a facility in our dataset may 

report on Ar, Cd, Cr, Pb, and Ni emissions for one or more years but never report CN- and Hg 

emissions. The other 80% of missing values are unexplained in the RETC database. These values 

may represent: (a) data missing at random due to reporting or data administration issues, (b) zero 

discharges or discharges below the required RETC reporting threshold in a given year for that 

contaminant, or (c) data missing strategically to hide undesirable behavior. We have no way of 

knowing which of these explanations applies.  

We address missingness as follows. In our analysis, we generally assume explanation (a), 

noting that random measurement error results in attenuation bias. We also explore robustness to 

explanation (b) by replicating all analyses with missing values set to zero discharges below. 

Regarding missing data explanation (c), we take both an institutional and empirical perspective. 

First, we note that (c) may be less likely than imagined. RETC is not a regulatory database. 

Personnel from Mexico’s environment ministry assess recordkeeping and pollution reporting as 

part of their air, water, and waste programs, but reporting unusually high toxic water pollution 

discharges into RETC cannot and does not result in direct government penalties, fines, or 

sanctions. Second, we recognized that bias will arise in our analysis if “missingness” appears 

differentially across poor vs. rich neighborhoods (or high majority race vs. high minority race 

neighborhoods) and considered the empirical implications. We therefore attempted to predict 

“missingness” econometrically. We constructed square panels for each contaminant and regressed 

a 0/1 missingness indicator on the marginalization index, our indigenous race measure, industry 

fixed effects, state fixed effects, and year fixed effects. We present frequency of missing data for 

each pollutant by year in Missing Data Appendix Table 1.  

 



Missing Data Appendix Table 1. Frequency of Missingness, by pollutant and year 

        
Year As Cd Cr CN- Pb Hg Ni 
2005 1029 1036 1031 1015 988 1049 996 

        
2006 923 

 
938 947 914 873 943 894 

2007 1016 
 

1029 1047 1004 974 1034 981 

2008 1267 
 

1283 1267 1249 1233 1287 1242 

2009 1128 
 

1176 1169 1128 1134 1162 1137 

2010 1238 
 

1263 1254 1248 1236 1283 1226 

2011 1260 
 

1268 1257 1269 1242 1284 1226 

2012 1193 
 

1201 1197 1199 1168 1218 1152 

2013 
 

1224 1231 1224 1233 1215 1250 1191 

NOTES: Total of 1,631 facilities with one of the seven toxics reported at least once 2005-2013. 

  



Missing Data Appendix Table 2 indicates that missingness, although not purely random, is 

reassuringly not systematically related to sociodemographics. Missingness is increasing over time 

(although non-monotonically) and more likely in some states than others (variation across states 

differs by substance). Conditional on other facility characteristics, however, missingness is not 

typically associated with wealth or race. 

Missing Data Appendix Table 2. Predictions of Missingness, by pollutant 
Regressions of a binary variable for missing pollution data on socio-demographics and controls 

        
DEP.VAR: 0/1 indicator of: As Cd Cr CN- Pb Hg Ni 

        
Marginalization Index 0.005 -0.003 -0.009 -0.012* -0.002 -0.002 -0.002 

 (0.006) (0.006) (0.006) (0.006) (0.006) (0.006) (0.006) 
        

Indigenous race 
 

-0.003 
(0.003) 

-0.004 
(0.003) 

-0.003 
(0.003) 

-0.002 
(0.003) 

-0.001 
(0.003) 

-0.002 
(0.003) 

-0.001 
(0.003) 

        
Industry FE X X X X X X X 
        
State FE X X X X X X X 
        
Year FE 
 

X X X X X X X 

# observations 12,906 12,771 12,870 12,996 13,356 12,780 13,347 
NOTES: Linear probability estimates. ** p<0.05, * p<0.10 for two-sided tests. 
 

 

We also explored the possibility that missing pollution observations were truly zero (or 

very low) discharges. To operationalize tests, we replaced all missing observations with zeros 

provided the facility reported on the given pollutant at least once during our sample period. We 

then replicated all analyses. We find smaller but still robustly positive relationships between 

pollution and marginalization (see Missing Data Appendix Table 3). For example, full panel fixed 

effects models indicate that a 1 standard deviation increase in the marginalization index for the 

neighborhood around a facility results in: a 19.1% increase in arsenic, a 13.8% increase in 

cadmium, a 20.6% increase in chromium, a 20.8% increase in cyanides, a 11.7% increase in lead, 

a 28.0% increase in mercury, and a 14.4% increase in nickel.  



Missing Data Appendix Table 3. Robustness to Replacing Missing with Zero 
        

Panel A: Cross-sectional regressions of pollution on marginalization and population density 
        

DEP.VAR:  As Cd Cr CN- Pb Hg Ni 
        

Marginalization Index 0.015 1.596* 4.061* 0.358 2.465* 0.093** 1.123 
 (0.233) 

 
(1.184) (2.771) (0.352) (1.560) (0.043) (3.084) 

Population density X 
 

X X X X X X 

# observations 1,439 1,424 1,435 1,450 1,489 1,425 1,489 
Panel B: Panel regressions: First differences, facility by period data 

        
DEP.VAR: The log of: As Cd Cr CN- Pb Hg Ni 

        
Marginalization Index 0.245* 0.128 0.302** 0.246** 0.201** 0.303** 0.156** 

 (0.156) (0.110) (0.124) (0.132) (0.083) (0.179) (0.084) 
        

Population density X X X X X X X 
        
Facility FE X X X X X X X 
# observations 2,771 2,745 2,766 2,795 2,868 2,742 2,872 
  Panel C: Panel regressions: Full panel, facility by year data 

        
DEP.VAR: The log of: As Cd Cr CN- Pb Hg Ni 

        
Marginalization Index 0.163* 0.118** 0.176** 0.178** 0.100** 0.239** 0.123** 

 (0.099) (0.050) (0.051) (0.063) (0.036) (0.106) (0.033) 
        

Population density X X X X X X X 
        
Year FE X X X X X X X 
        
Facility FE X X X X X X X 
# observations 12,480 12,363 12,456 12,591 12,924 12,351 12,936 

Panel D: Full panel regressions, municipality with year interactions 
        
DEP.VAR: The log of: As Cd Cr CN- Pb Hg Ni 
        
Marginalization Index 0.044 

(0.099) 
0.110* 
(0.078) 

0.134** 
(0.077) 

0.077 
(0.070) 

0.076 
(0.079) 

0.100 
(0.095) 

0.163** 
(0.095) 

        
Population density  X X X X X X X 
        
Municipality X Year FE X X X X X X X 
        
Facility FE X X X X X X X 
# observations 12,480 12,363 12,456 12,591 12,924 12,351 12,936 

NOTES: All panels present results from regressions that mimic those reported Table 1 with missing 
pollution numbers replaced with zero. Standard errors clustered at the state level. ** p<0.05, * p<0.10 for 
one-sided tests. 
 
 
 



 
 
 
 
 
 
 
 
 
 

Appendix (Robustness) Tables 
  



Appendix Table 1. Robustness to 0.5 KM Radii 
 

Panel A: Cross-sectional regressions of pollution on marginalization and population density 
        

DEP.VAR:  As Cd Cr CN- Pb Hg Ni 
        

Marginalization Index 0.71 3.83** 9.19** 0.58 21.37** 0.16* 8.25 
 (0.71) (2.11) 

 
(4.17) (1.43) (9.18) (0.10) (7.29) 

Population density X X X X X X X 
# observations 1,315 1,303 1,315 1,330 1,366 1,304 1,363 

Panel B: Panel regressions: First differences, facility by period data 
        

DEP.VAR: The log of: As Cd Cr CN- Pb Hg Ni 
        

Marginalization Index 0.09 0.09 0.12 0.25 0.25 0.29 0.28* 
 (0.24) (0.26) (0.19) (0.26) (0.21) (0.29) (0.18) 
        

Population density X X X X X X X 
        
Facility FE X X X X X X X 
# observations 712 679 683 713 760 662 785 

Panel C: Panel regressions: Full panel, facility by year data 
        

DEP.VAR: The log of: As Cd Cr CN- Pb Hg Ni 
        

Marginalization Index 0.08 0.25 0.20 0.25* 0.18 0.35** 0.29** 
 (0.18) (0.20) (0.19) (0.16) (0.15) (0.18) (0.15) 
        

Population density  X X X X X X X 
        
Year FE X X X X X X X 
        
Facility FE X X X X X X X 
        
# observations 3,798 3,662 3,717 3,819 3,983 3,616 4,006 

Panel D: Full panel regressions, municipality with year interactions 
        
DEP.VAR: The log of: As Cd Cr CN- Pb Hg Ni 
        
Marginalization Index 0.23 

(0.26) 
0.51** 
(0.24) 

0.48** 
(0.24) 

0.41** 
(0.22) 

0.31* 
(0.19) 

0.50** 
(0.20) 

0.61** 
(0.21) 

        
Population density  X X X X X X X 
        
Municipality X Year FE X X X X X X X 
        
Facility FE X X X X X X X 
# observations 3,798 3,662 3,717 3,819 3,983 3,616 4,006 

 NOTES: All panels present results from regressions that mimic those reported Table 1. Standard errors 
clustered at the state level. ** p<0.05, * p<0.10 for one-sided tests. Average marginalization index and 
population density for the 500-meter radii are -0.57 and 7,996 people per square kilometer, respectively. 
 
  



Appendix Table 2. Robustness to 1.5KM Radii 
        

Panel A: Cross-sectional regressions of pollution on marginalization and population density 
        

DEP.VAR:  As Cd Cr CN- Pb Hg Ni 
        

Marginalization Index 0.96 3.03** 13.62** -0.37 15.60** 0.10 1.46 
 (0.84) 

 
(1.51) (7.20) (0.91) (7.68) (0.11) (5.60) 

Population density  X X X X X X X 
        

# observations 1,439 1,424 1,435 1,450 1,489 1,425 1,489 
Panel B: Panel regressions: First differences, facility by period data 

        
DEP.VAR: The log of: As Cd Cr CN- Pb Hg Ni 

        
Marginalization Index 0.07 -0.07 0.13 0.20* 0.16 0.16* 0.08 

 (0.17) (0.12) (0.19) (0.14) (0.15) (0.10) (0.12) 
        

Population density  X X X X X X X 
        
Facility FE X X X X X X X 
# observations 789 768 768 793 856 726 882 

Panel C: Panel regressions: Full panel, facility by year data 
        

DEP.VAR: The log of: As Cd Cr CN- Pb Hg Ni 
        

Marginalization Index -0.02 0.12 0.10 0.17* 0.09 0.18* 0.17** 
 (0.13) (0.12) (0.14) (0.11) (0.10) (0.11) (0.10) 
        

Population density X X X X X X X 
        
Year FE X X X X X X X 
        
Facility FE X X X X X X X 
# observations 4,308 4,170 4,200 4,329 4,530 4,086 4,540 

Panel D: Full panel regressions, municipality with year interactions 
        
DEP.VAR: The log of: As Cd Cr CN- Pb Hg Ni 
        
Marginalization Index 0.24 

(0.24) 
0.15 

(0.29) 
0.25 

(0.26) 
0.09 

(0.24) 
0.03 

(0.24) 
0.16 

(0.21) 
0.17 

(0.22) 
        
Population density  X X X X X X X 
        
Municipality X Year FE X X X X X X X 
        
Facility FE X X X X X X X 
# observations 4,308 4,170 4,200 4,329 4,530 4,086 4,540 

NOTES: All panels present results from regressions that mimic those reported Table 1. Standard errors 
clustered at the state level. ** p<0.05, * p<0.10 for one-sided tests. Average marginalization index and 
average population density for the 1.5-kilometer radii are -0.6 and 10,250 people per square kilometer, 
respectively. 
  



Appendix Table 3: Robustness to alternative lag structures 
Panel A: Panel regressions: First differences, facility by period data 

DEP.VAR: The log of: As Cd Cr CN- Pb Hg Ni 
        

Marginalization Index 0.10 0.08 0.21 0.29** 0.29** 0.37** 0.21* 
 (0.14) (0.17) (0.16) (0.15) (0.15) (0.16) (0.15) 
        

Population density X X X X X X X 
Facility FE X X X X X X X 
        
# observations 773 752 752 778 841 712 864 

Panel B: Panel regressions: Full panel, facility by year data 
DEP.VAR: The log of: As Cd Cr CN- Pb Hg Ni 

        
Marginalization Index 0.01 0.12 0.21 0.13 0.03 0.26** 0.21* 

 (0.12) (0.14) (0.19) (0.11) (0.14) (0.09) (0.15) 
        

Population density  X X X X X X X 
Year FE X X X X X X X 
Facility FE X X X X X X X 
        
# observations 4,180 4,049 4,082 4,210 4,405 3,966 4,412 

Panel C: Full panel regressions, municipality with year interactions 
DEP.VAR: The log of: As Cd Cr CN- Pb Hg Ni 
        
Marginalization Index 0.20 

(0.23) 
0.35 

(0.31) 
0.52* 
(0.33) 

0.23 
(0.18) 

0.18 
(0.23) 

0.54** 
(0.30) 

0.30 
(0.24) 

        
Population density  X X X X X X X 
Municipality X Year FE X X X X X X X 
Facility FE X X X X X X X 
        
# observations 4,180 4,049 4,082 4,210 4,405 3,966 4,412 
        

Notes: Standard errors clustered at the state level. ** p<0.05, * p<0.10 for one-sided tests. Panel A replicates 
the first difference model where we assign 2005-2007 pollution data to census 2000 socioeconomic data 
(i.e. a 5-7 year lag) and 2011-2013 pollution data to census 2005 socioeconomic data (i.e. a roughly 
symmetric 6-8 year lag). Panels B and C replicates the panel models by similarly assigning pollution data 
from 2005-2009 to census 2000 (lags of 5-7 years) and assigning pollution data from 2010-2013 to census 
2005 (roughly symmetric lags of 5-8 years). 

 
 
 

  



Appendix Table 4. Replication with sociodemographic data from census 2000 and 2010 
        

Panel A: Cross-sectional regressions of pollution on marginalization and population density 
        

DEP.VAR:  As Cd Cr CN- Pb Hg Ni 
        

Marginalization Index 0.96 2.92** 9.63* 0.45 13.93** 0.26* 2.83 

 
(0.76) 

 
(1.46) (5.83) (0.80) (5.58) (0.17) (4.52) 

Population density  X X X X X X X 
        
# observations 1,435 1,420 1,431 1,446 1,484 1,420 1,484 

Panel B: Panel regressions: First differences, facility by period data 
        

DEP.VAR: The log of: As Cd Cr CN- Pb Hg Ni 
        

Marginalization Index 0.18 0.20* 0.28* 0.32** 0.32** 0.38** 0.29** 
 (0.14) (0.15) (0.17) (0.14) (0.17) (0.15) (0.14) 
        

Population density  X X X X X X X 
        
Facility FE X X X X X X X 
# observations 779 758 757 783 845 716 869 

Panel C: Panel regressions: Full panel, facility by year data 
        

DEP.VAR: The log of: As Cd Cr CN- Pb Hg Ni 
        

Marginalization Index 0.10 0.18* 0.18 0.11* 0.01 0.28** 0.17 
 (0.11) (0.14) (0.16) (0.08) (0.12) (0.08) (0.13) 
        

Population density X X X X X X X 
        
Year FE X X X X X X X 
        
Facility FE X X X X X X X 
# observations 4,198 4,071 4,102 4,229 4,420 3,987 4,434 

Panel D: Full panel regressions, municipality with year interactions 
        
DEP.VAR: The log of: As Cd Cr CN- Pb Hg Ni 
        
Marginalization Index 0.33** 

(0.17) 
0.38* 
(0.25) 

0.39 
(0.33) 

0.17 
(0.14) 

0.01 
(0.19) 

0.41* 
(0.29) 

0.20 
(0.17) 

        
Population density  X X X X X X X 
        
Municipality X Year FE X X X X X X X 
        
Facility FE X 

 
X X X X X X 

# observations 4,198 4,071 4,102 4,229 4,420 3,987 4,434 
NOTES: All panels present results from regressions that mimic those reported Table 1 but utilizing only 
census 2000 and 2010 socioeconomic data. Standard errors clustered at the state level. ** p<0.05, * p<0.10 
for one-sided tests. 
 
 
  



Appendix Table 5. Replication with imputed sociodemographic data  
        

Panel A: Panel regressions: Full panel, facility by year data 
        

DEP.VAR: The log of: As Cd Cr CN- Pb Hg Ni 
        

Marginalization Index 0.06 0.22 0.21 0.23* 0.23* 0.31** 0.24* 
 (0.17) (0.20) (0.22) (0.15) (0.17) (0.16) (0.16) 
        

Population density X X X X X X X 
        
Year FE X X X X X X X 
        
Facility FE X X X X X X X 
        
# observations 4,268 4,126 4,157 4,290 4,489 4,042 4,496 
        

Panel B: Full panel regressions, municipality with year interactions 
        
DEP.VAR: The log of: As Cd Cr CN- Pb Hg Ni 
        
Marginalization Index 0.34* 

(0.25) 
0.27 

(0.39) 
0.39 

(0.43) 
0.31 

(0.30) 
0.11 

(0.33) 
0.29 

(0.30) 
0.26 

(0.36) 
        
Population density  X X X X X X X 
        
Municipality X Year FE X X X X X X X 
        
Facility FE X X X X X X X 
        
# observations 4,268 4,126 4,157 4,290 4,489 4,042 4,496 
        

Panel C: Full panel regressions, state with year interactions 
        
DEP.VAR: The log of: As Cd Cr CN- Pb Hg Ni 
        
Marginalization Index 0.34* 

(0.22) 
0.37* 
(0.27) 

0.37* 
(0.28) 

0.29* 
(0.19) 

0.28 
(0.23) 

0.37** 
(0.19) 

0.38* 
(0.28) 

        
Population density  X X X X X X X 
        
State X Year FE X X X X X X X 
        
Facility FE X X X X X X X 
        
# observations 4,268 4,126 4,157 4,290 4,489 4,042 4,496 
        

NOTES: All panels present results from regressions that mimic those reported Table 1 with imputed 
socioeconomic data. Standard errors clustered at the state level. ** p<0.05, * p<0.10 for one-sided tests. 
 
 
 
 
 
 
  



Appendix Table 6. Naïve regressions without facility-level fixed effects 
        

Panel A: Full panel, facility by year data, with state and year fixed effects 
        

DEP.VAR: The log of: As Cd Cr CN- Pb Hg Ni 
        

Marginalization Index -0.05 -0.01 0.13* 0.09 0.05 0.07 0.05 
 (0.08) (0.08) (0.08) (0.09) (0.07) (0.09) (0.06) 
        

Population density X X X X X X X 
        
Year FE X X X X X X X 
        
State FE X X X X X X X 
        
# observations 4,250 4,116 4,148 4,277 4,470 4,033 4,483 
        

Panel B: Full panel, facility by year data, with state, year, and industry fixed effects 
        
DEP.VAR: The log of: As Cd Cr CN- Pb Hg Ni 
        
Marginalization Index -0.06 

(0.08) 
0.00 

(0.09) 
0.12* 
(0.09) 

0.09 
(0.09) 

0.06 
(0.08) 

0.07 
(0.10) 

0.06 
(0.07) 

        
Population density  X X X X X X X 
        
Year FE X X X X X X X 
        
State FE X X X X X X X 
 
Industry FE 

 
X 

 
X 

 
X 

 
X 

 
X 

 
X 

 
X 
 

# observations 4,250 4,116 4,148 4,277 4,470 4,033 4,483 
        

NOTES: All panels present results from regressions that mimic those reported Table 1 without facility fixed 
effects. Standard errors clustered at the state level. ** p<0.05, * p<0.10 for one-sided tests. 
 
  



Appendix Table 7. Robustness to alternative fixed effect specifications 
        

Panel A: Full Panel regressions: state by year fixed effects 
        

DEP.VAR: The log of: As Cd Cr CN- Pb Hg Ni 
        

Marginalization Index 0.26** 0.35** 0.39** 0.32** 0.27** 0.40** 0.40** 
 (0.13) (0.16) (0.16) (0.11) (0.12) (0.12) (0.16) 
        

Population density  X X X X X X X 
        
State by Year FE X X X X X X X 
        
Facility FE X X X X X X X 
        
# observations 4,250 4,116 4,148 4,277 4,470 4,033 4,483 

        
Panel B: Full Panel regressions: industry by year fixed effects 

        
DEP.VAR: The log of: As Cd Cr CN- Pb Hg Ni 

        
Marginalization Index 0.09 0.23* 0.23* 0.30** 0.15 0.32** 0.26** 

 (0.11) (0.15) (0.16) (0.10) (0.12) (0.11) (0.12) 
        

Population density X X X X X X X 
        
Industry by Year FE X X X X X X X 
        
Facility FE X X X X X X X 

 
# observations 4,250 4,116 4,148 4,277 4,470 4,033 4,483 
        

NOTES: All panels present results from regressions that mimic those reported in Table 1. Standard errors 
clustered at the state level. ** p<0.05, * p<0.10 for one-sided tests.  



 
Appendix Table 8: Panel regressions dropping 87 facilities with name or ownership changes 

 
Panel A: Panel regressions: First differences, facility by period data 

DEP.VAR: The log of: As Cd Cr CN- Pb Hg Ni 
        

Marginalization Index 0.18 0.14 0.21 0.34** 0.23* 0.35** 0.19   
 (0.17) (0.19) (0.21) (0.14) (0.17) (0.17) (0.16) 
        

Population density X X X X X X X 
Facility FE X X X X X X X 
        
# observations 736 721 718 740 792 683 828 

Panel B: Panel regressions: Full panel, facility by year data 
DEP.VAR: The log of: As Cd Cr CN- Pb Hg Ni 

        
Marginalization Index 0.14 0.24** 0.21* 0.30** 0.14 0.36** 0.25** 

 (0.12) (0.14) (0.15) (0.10) (0.12) (0.12) (0.12) 
        

Population density  X X X X X X X 
Year FE X X X X X X X 
Facility FE X X X X X X X 
        
# observations 4,032 3,901 3,936 4,053 4,218 3,833 4,255 

Panel C: Full panel regressions, municipality with year interactions 
DEP.VAR: The log of: As Cd Cr CN- Pb Hg Ni 
        
Marginalization Index 0.46** 

(0.19) 
0.44** 
(0.20) 

0.46** 
(0.26) 

0.51** 
(0.14) 

0.26* 
(0.16) 

0.55** 
(0.18) 

0.42** 
(0.21) 

        
Population density  X X X X X X X 
Municipality X Year FE X X X X X X X 
Facility FE X X X X X X X 
        
# observations 4,032 3,901 3,936 4,053 4,218 3,833 4,255 
        

Notes: Standard errors clustered at the state level; ** p<0.05, * p<0.10 for one-sided tests. 
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