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ABSTRACT 
 
This paper uses a large database of multiple birth cohorts to study relationships between air 

pollution exposure and non-infant children’s respiratory health outcomes. We observe several 

years of early-life health treatments for hundreds of thousands of English children. Three distinct 

research designs account for potential socioeconomic, behavioral, seasonal, and economic 

confounders. We find that marginal increases in carbon monoxide and ground-level ozone are 

associated with statistically significant increases in children’s contemporaneous respiratory 

treatments. We also find that carbon monoxide exposure over the previous year has an effect on 

children’s health that goes above and beyond contemporaneous exposure alone.  
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1. Introduction 

Pollution regulations are controversial, and economists and policymakers continue to 

debate their efficiency and cost effectiveness. Discussions of the benefits typically focus on 

health considerations. In principle, controlled clinical experiments could conclusively estimate 

links between pollution and human health. In practice, however, much of this research is 

prevented by ethical and other considerations. Relationships between pollution and morbidity or 

mortality are most often inferred from observational data. 

 A literature published in epidemiological journals establishes statistical associations 

between air pollution and human health. Economists have recently contributed new datasets and 

empirical approaches to study links between pollution and morbidity and mortality. The aim is a 

more precise estimate of the causal effect of pollution. These latter studies enhance our 

understanding of the relationships between air quality and health by more completely controlling 

for potentially confounding unobserved factors. 

 This paper builds on the recent literature by constructing a rich database of multiple birth 

cohorts to examine relationships between air pollution exposure and children’s morbidity. We 

focus on children’s health for several reasons. Relationships between pollution and health 

outcomes for non-infant children are understudied and relatively poorly understood. Closely 

related studies often focus on links between pollution and infant mortality or pollution and adult 

outcomes. Children are also thought to be highly susceptible to damages from pollution. High-

risk impacts are likely attributable to ongoing physiological respiratory development, smaller 

average lung size, and increased activity levels (Committee on Environmental Health 2004; 

Gauderman 2000). Pollution effects for children may be long lasting as early-life illness may 

impede long-term human capital development (Currie 2009). Finally, economic costs for 

children’s respiratory illnesses are large. The CDC estimates that treatment costs alone amount to 

several billion dollars annually in the U.S. 

Our analysis makes several contributions. First, our dataset is unusually large and 

detailed. We observe several years of early-life health treatments for hundreds of thousands of 

children (more than 328,000 children in one sample and 680,000 children in another sample). 

Second, we assess the health impacts of both contemporaneous pollution exposure and average 

pollution exposure over the previous year. Studies emphasizing causal effects typically only 

identify contemporaneous pollution impacts. However, we observe repeated observations for 
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each individual and individuals from multiple birth cohorts, so plausible attribution of some non-

contemporaneous impacts is possible. Third, our pollution and weather data are observed at a 

fine geographic scale. Our geographic unit of analysis – English middle super output areas – 

average less than 1/3 of the size of the average California zip code. Fourth, we examine data 

from a universal health care system. This setting offers two advantages: we observe both 

inpatient treatments and day cases, and we minimize common selection bias concerns that arise 

due to differences in insurance coverage and ability to pay.  

Even with a rich dataset, attributing health outcomes to pollution can be challenging. A 

household’s location is not randomly assigned, so socioeconomic confounders may be correlated 

with both pollution exposure and health outcomes via mobility and Tiebout sorting. Several 

determinants of illness may be spuriously correlated with pollution through seasonality. Local 

trends in economic activity may influence both pollution and health. Our research design seeks 

to isolate causal impacts. We control for children’s age, health at birth measures, seasonality, 

weather, and national time trends. We identify remaining relationships between pollution and 

non-infant children’s health outcomes in three distinct ways: (1) Analyses include individual-

level fixed effects. Identification of a given individual’s dose-response relationship comes only 

from atypical deviations from that individual’s own average pollution exposure, over all sample 

periods. Here, time invariant individual-level confounders like income, race, and persistent 

differences in local economic conditions will not bias estimates. Tiebout sorting correlated with 

long-run average differences in pollution will not bias estimates. (2) Analyses include local area-

by-year fixed effects. Identification of a given individual’s dose-response relationship comes 

only from atypical within-area deviations from that area’s average pollution exposure, for that 

same year. Confounders cannot bias estimates unless they are correlated with unusual or 

anomalous pollution levels within an area and a year. Tiebout sorting correlated with 

neighborhood specific trends in pollution will not bias estimates. (3) Analyses include area-by-

age fixed effects. Identification of an average individual’s dose-response relationship comes 

from differences in pollution exposure for children of the same age and living in the same area 

but born at different times. The intuition is that children living in the same area but born several 

months to a few years apart are presumed similar and are presumed to have grown up in similar 

circumstances, but face somewhat different pollution exposures at a given age because they 

reach that age at a different point in time. 
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We find that marginal increases in carbon monoxide (CO) and ground-level ozone (O3) 

are associated with statistically significant increases in children’s contemporaneous respiratory 

treatments. CO results are especially robust. We believe these findings are novel for two reasons. 

First, non-fatal morbidity impacts of carbon monoxide at common ambient levels remain poorly 

understood. The EPA’s integrated science assessment emphasizes that only a limited number of 

studies link carbon monoxide and respiratory health, and that the present evidence is merely 

“suggestive that a causal relationship exists” (USEPA 2010). Second, associations between 

criteria pollutants and morbidity outcomes for non-infant children are understudied. Most studies 

stressing causal effects focus on infant mortality, infant morbidity, and adult mortality. 

We also find that CO exposure over the previous year has an incremental effect on 

children’s health that goes above and beyond contemporaneous CO exposure alone. While we do 

not claim to fully capture the cumulative effects of pollution on children’s respiratory health, we 

do contribute additional evidence on the causal effects of longer-term pollution exposure. These 

are open questions; the EPA asserts that the “available evidence is inadequate to conclude that a 

causal relationship exists” between longer-term CO and respiratory morbidity (USEPA 2010). 

Our findings suggest that research that focuses only on the acute health impacts of pollution may 

understate the benefits of pollution reductions. 

2. Background and Literature 

 We study the health impacts of particulate matter (PM10), carbon monoxide (CO), and 

ozone (O3) concentrations.  Particulate matter consists of solids and liquids suspended in the air. 

Particulates smaller than 10 micrometers in diameter are designated PM10. Common PM10 

sources include construction, on and off road vehicles, fires, and industrial facilities including 

power plants. Carbon monoxide is a colorless and odorless gas formed when carbon in fuel is 

incompletely burned. Vehicle emissions are the primary source of ambient carbon monoxide. 

Ground-level ozone is created from chemical reactions that occur between oxides of nitrogen and 

volatile organic chemicals in the presence of sunlight and heat. Primary ground-level ozone 

sources are vehicle emissions, gasoline vapors, and industrial facilities including power plants.  

2.1 Pathways Linking Pollution and Respiratory Health  

Medical research, including animal toxicology and in vitro mechanistic studies, suggests 

several biological pathways that may link contaminants with respiratory health outcomes in 

humans. Deposition of inhaled particulate matter (PM10) induces acute and persistent airway 
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inflammation, lung inflammation, pulmonary injury, and reduced lung function. More precise 

mechanisms may include oxidative stress, reduced host defenses against infectious disease, 

respiratory surface permeability disruptions, and alterations in cell signaling activity (USEPA 

2009). It is also believed that ozone (O3) causes lung inflammation, reduced lung function, and 

chronic lung disease, although specific mechanisms remain controversial (USEPA 2006). It has 

been long accepted that carbon monoxide (CO) exposure at extremely high levels induces 

hypoxic responses that can lead to severe morbidity or mortality (Raub and Benignus 2002).  

Plausible mechanisms linking health outcomes and more typical ambient levels of carbon 

monoxide were unknown until recently. Recent evidence suggests that carbon monoxide alters 

protein function at concentrations near those commonly observed. Precise pathways may include 

a combination of hypoxic stress, oxidative stress, and cell signaling changes (USEPA 2010). 

Note that outside of controlled experimental settings, health reactions to CO may also be 

attributable to high correlations between CO and currently unmeasured toxic air pollutants also 

common in vehicle emissions.  

2.2 Observational Studies Linking Air Pollution and Health Outcomes 

 Numerous studies establish statistical associations between air pollution and health 

outcomes. Early epidemiologic research often examined time-series relationships between 

pollution concentrations and morbidity or mortality outcomes for a single city. More recent 

studies investigated independent time-series associations for several cities, and then used meta-

analyses to estimate average relationships over a larger study area (Spix et al. 1998; Samet et al. 

2000; Dominici 2003). Research published in epidemiology journals increasingly uses multi-city 

cohort or repeated cross-section approaches (Dockery et al. 1993; Pope et al. 1995; Peters et al. 

1999; Pope et al. 2002; Gauderman 2007; Jarrett et al. 2009; Sheffield et al. 2011). These studies 

often employ a two-step research design: First, individuals’ health outcomes over several periods 

are regressed on community identifiers and individual-level covariates. Second, the estimated 

community-level fixed effects, referred to as relative risks, are regressed on long-term 

community-level average pollution measures.  

These recent advances have contributed significantly to the state of knowledge. The 

widely used two-step approach accounts for the fact that air quality exposure is usually observed 

at the community-level. However, published estimates may be affected unobserved factors that 

confound causal identification, as common research designs in the epidemiology-oriented 
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literature often ultimately exploit purely cross-sectional or purely temporal statistical 

identification (Chay et al. 2003; Chay and Greenstone 2003). In response to these concerns, 

environmental and health economists have begun to contribute additional datasets and statistical 

tools to the study of pollution and health, with the goal of isolating causal relationships. 

Economists typically use one of three research designs: The first design links contaminant 

exposure to self-reported health outcomes and detailed individual-level characteristics collected 

from surveys. The second design involves natural experiments or instrumental variable 

approaches. The third involves fixed effect approaches that exploit within-area pollution 

variation. Studies also vary based on the health outcomes they consider (morbidity vs. mortality), 

the unit of observation (individuals vs. areas), and the population of interest (infants, children, 

adults, the elderly, etc.). 

Several notable studies consider pollution and mortality. Pope et al. (1992) exploited the 

closing and reopening of a steel mill in Utah Valley to identify the effect of PM10 exposure on 

adult mortality. Chay et al. (2003) examined the relationships between early 1970’s suspended 

particulates and adult mortality using county-by-year variation induced by the Clean Air Act. 

Chay and Greenstone (2003) used a natural experiment stemming from the 1981-1982 recession 

to examine the relationship between total suspended particulates and infant mortality at the 

county-by-year level. Janke et al. (2009) explored relationships between several air pollutants 

and population mortality rates with local authority-by-year data from the UK during the late 

1990’s and early 2000’s.  

Other well-cited studies investigated relationships between pollution and morbidity. 

Neidell (2004) used seasonal pollution variation within California zip codes to examine the 

connection between several air pollutants and children’s asthma hospitalizations during the 

1990’s. Moretti and Neidell (2011) used boat traffic at the port of Los Angeles as an instrument 

to estimate the impacts of ozone on zip-code level hospitalizations in Southern California during 

the 1990’s. Schlenker and Walker (2011) used exogenous changes in daily airport traffic in 

California to investigate relationships between changes in short-run pollution exposure and 

changes in unplanned hospitalizations among those who live near airports. 

The studies discussed in the preceding paragraphs typically analyze spatially aggregated 

data, largely because pollution exposure is not observed at the individual level. An alternative 

approach uses individual health outcome data. This allows for different statistical approaches and 
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may allow for individual-level controls. Much of this work focuses on infant outcomes. Currie 

and Neidell (2005) and Currie et al. (2009) used individual-level data and extensive fixed effect 

structures to examine relationships between pollution and infant outcomes in California and New 

Jersey during the 1990’s. Knittel et al. (2009) used road traffic as an instrument for pollution 

exposure to investigate relationships between pollution and infant mortality in California during 

the early 2000’s. Currie and Walker (2011) exploited the introduction of EZ-pass toll collection 

systems to explore the relationships between traffic congestion and prematurity and low 

birthweight.  

An alternative means of collecting individual information is survey data.  The use of 

survey methods allows detail to be collected about individual characteristics, outcomes, and 

behaviors. Krupnick et al. (1990) matched daily variation in air pollution with daily variation in 

self-reported health status for individuals living in Southern California. Evans and Smith (2005) 

used survey data from several birth cohorts to explore relationships between long-term pollution 

exposure and the onset of previously unreported serious health conditions in older adults. 

One thing to note is that the literature emphasizing causal effects has largely focused on 

adults and infants. Work on children is somewhat less common. Notable studies include Pope 

(1989), which used the closure and reopening of a steel mill to identify the effects of PM10 on 

hospital admissions in Utah Valley. Lleras-Muney (2010) leveraged changes in location due to 

military transfers to study the impact of pollution on hospitalizations for military children. Beatty 

and Shimshack (2011) exploited differential timing of school bus retrofit programs in the Puget 

Sound area of Washington to explore the relationships between localized air pollution programs 

and children’s respiratory outcomes during the early 2000’s.  

2.3 Contribution 

This paper builds on the studies reviewed above, as well as the larger literature exploring 

pollution and health. We use a birth cohort research design. We use a broad and quasi-

representative sample. Our unique dataset also allows us to consider the effects of both 

contemporaneous pollution exposure and the average pollution exposure over the past year. We 

study relationships between pollution and non-fatal health outcomes for non-infant children. 

Why might the impact of pollution exposure over the past year be of interest? Animal 

toxicology, in vitro mechanistic, and limited controlled human exposure studies suggest that the 

effects of contemporaneous or shorter-run exposure may differ from the effects of longer-term 
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exposure. Shorter-run or acute pollution exposure may be more likely to be associated 

decrements to pulmonary functions like breathing rate and volume, pulmonary inflammation, 

oxidative injury, and exacerbation of existing allergies (USEPA 2006; USEPA 2009; USEPA 

2010). Longer-run pollution exposure may be more likely to be associated with pulmonary 

injuries related to wall thickness, protein structure and protein function, lung growth and 

development, cell signaling changes, airway remodeling, and the progression of allergies 

(USEPA 2006; USEPA 2009; USEPA 2010).     

Why might the impact of pollution on young children differ from the impacts of pollution 

on other groups? Pollution effects on children are likely driven by direct exposure, whereas 

pollution-caused infant mortality, preterm birth, and low birth weight likely reflect placental 

function or maternal health channels. Young children spend more time outdoors, exhibit greater 

activity levels, experience higher and more variable breathing rates, and display lower nasal 

particle deposition rates than most other age groups. Children also have lower body weight and 

less lung surface area than adults. Respiratory development, primarily through alveoli formation 

and cell differentiation, is especially rapid during early childhood (Dietert et al. 2000). Young 

children may be more susceptible to changes in lung function, cell proliferation, airway 

inflammation, and pulmonary injury than other subpopulations (USEPA 2006, USEPA 2009, 

USEPA 2010). Children are especially susceptible to viral conditions like respiratory syncytial 

virus (RSV) and chronic conditions like asthma, and pollution effects can aggravate or interact 

with these other respiratory conditions. In short, dose-response relationships for children may 

differ from those of other age groups.  

Another reason the welfare impacts of pollution on young children may differ from the 

impact of pollution on other groups is that long-term consequences of health shocks may be 

especially large for young children. As surveyed in Currie (2009) and elsewhere, a growing 

literature suggests that childhood health can influence future labor supply and productivity in at 

least three key ways. First, poor child health may be associated with later poor adult health. 

Second, poor child health can have a direct effect on cognitive ability and neuro-behavioral 

development. Third, poor child health can have an indirect effect on skill acquisition via school 

absences and ability to learn while in school. 

3. Data 
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To analyze the relationship between pollution and children’s morbidity, we constructed 

an individual-by-month panel. Time invariant individual characteristics were not aggregated. 

Each individual’s health outcomes were summed over days in the month. Monthly pollution and 

weather exposure data were calculated for the middle super output area (MSOA) of the 

individual’s residence. MSOA’s are fine geographic units; for perspective, the average MSOA is 

less than 1/3 the size of the average California zip code. 

3.1 Individual data 

 We collected comprehensive health outcome data from England’s Hospital Episodes 

Statistics Database (HES). The HES tracks individuals’ contacts with National Health Service 

(NHS) hospitals and treatment centers.2 We first obtained birth records for children born in 

England between 1997 and 1999.3 For 1.13 million of these births, or about 2/3 of total births in 

England over the time period, we observed an individual identifier, date of birth, and MSOA of 

residence at birth.4 For about 50 percent of the birth records, we also observed sex, weeks of 

gestation at birth, birth weight in grams, and maternal characteristics. 

We then obtained individual-level inpatient and day case discharge data from all NHS 

hospitals and treatment centers funded by the NHS. Each discharge observation consists of an 

individual identifier, treatment date, patient age, patient MSOA at time of treatment, and a 

detailed diagnosis code. Consistent individual identifiers allow us to match birth records with 

health events and allow us to track each child’s complete NHS contacts over many years. We 

track each child for 60 months, from their 2nd birthday until their 7th birthday. For example, for a 

child born in June 1999, we observed health treatments from June 2001 through June 2006. We 

do not study early childhood NHS contacts since infant outcomes are well studied in the 

literature, and because morbidity outcomes during these years are confounded with mortality 

                                                 
2 NHS treatment centers are specialized diagnostic and treatment facilities. These facilities are often located on the 
grounds of full NHS hospitals and are designed to lower costs and wait times for scheduled, short-stay elective 
procedures (Bate et al. 2006). While services vary somewhat across facilities, NHS treatment centers handle 
inpatient and day cases. Diagnoses and procedures at NHS treatment centers are considerably more serious than 
seeing a general practitioner doctor. One can think of NHS treatment centers as “specialty hospitals.” 
3 Cohort start dates were largely determined by data availability. 
4 We do not observe children born in private hospitals or private homes in England. We omit stillborn children and 
children who die immediately following birth. We also omit children with birth records that are missing MSOA of 
residence. Comparisons with national statistics suggest that our 1.13 million children represent approximately 2/3 of 
all children born in England between 1997 and 1999. 
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outcomes.5 We do not examine childhood NHS contacts after age 7 due to data availability and 

because age 6 or younger corresponds closely with common physiological definitions of “young 

children.” 

Since our focus is on air pollution and children’s health, we analyze diagnosis codes 

related to diseases of the respiratory system (ICD-10 codes beginning with “J”). In our main 

analyses, outcome variables are defined over all such diseases. Related discharges include those 

related to acute upper respiratory infections (including sinutis), influenza and pneumonia, acute 

lower respiratory infections such as acute bronchitis and acute bronchiolitis, chronic respiratory 

infections including asthma and chronic bronchitis, and other diseases of the respiratory system. 

A few respiratory ailments, like pleurisy, have never been associated with air pollution. When 

these diseases are included in outcome variables, potential measurement error conservatively 

biases our pollution impacts towards zero and reduces statistical precision.  

3.2 Pollution and weather data 

 We collect comprehensive pollution data from the UK Air Quality Archive for January 

1997 through December 2006.  We obtain monitor-by-hour readings on particulate matter 

(PM10), ozone (O3), and Carbon Monoxide (CO). For each contaminant, approximately 60-80 

monitors assess concentrations at any given time. A spatial distribution map is presented in 

Figure 1. Monitors measure pollution in every region of England, but monitor density is highest 

where population density is highest. For example, multiple monitors are clustered within the 

metro areas of London, Birmingham, Leeds, Manchester, Liverpool, and Newcastle/Sunderland. 

 We assign concentrations for each pollutant to each MSOA-month following Currie and 

Neidell (2005). However, since urban monitor density is higher in England than it is in most of 

the United States, we choose a smaller pollution exposure radius than is common in the 

literature. The goal is to reduce exposure measurement error.6 The assignment procedure is as 

follows. First, we identify the population-weighted center of each and every MSOA. Second, we 

identify, for each MSOA-pollutant-day combination, all reporting pollution monitors within a 10 

mile radius of the identified population-weighted centroid. Third, we assign each monitor a 

weight proportional to the inverse of its distance from the MSOA center. We calculate these 

weights daily, since some monitors do not measure all pollutants for all sample days. Fourth, we 

                                                 
5 Children who die cannot be later observed in a hospital or primary care facility. Children’s deaths from respiratory 
conditions after the second birthday are extremely rare. 
6 As discussed in a later sensitivity section, results are robust to larger pollution radii as well. 
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calculate a weighted pollution concentration for every MSOA-pollutant-hour using the weights 

from step 3. Fifth, we calculate the monthly mean over the hourly measures to obtain pollution 

concentrations for each MSOA-contaminate-month combination. 

 We also assign weather data to each MSOA-month combination. We obtain raw data 

from the British Atmospheric Data Centers’ MIDAS Land Surface Station database.7 Weather 

data are observed from hundreds of weather stations (the exact number varies over time). Sites 

are distributed so that no station is more than roughly 50km from another station, and spatial 

coverage is especially high in urban areas (where our sample children are predominantly 

located). Sites are intended to be representative of the area around them. Observations on 

temperature and humidity are typically observed at the hourly level. We assign these data to local 

areas (MSOAs) on a monthly basis using a similar procedure to the one used to assign pollution 

concentrations to local area by month combinations. First, we identify the population-weighted 

center of each and every MSOA. Second, for each MSOA-weather metric-day combination, we 

identify all reporting stations within a 10 mile radius of the identified population-weighted 

centroid. Third, we assign each station a weight proportional to the inverse of its distance from 

the MSOA center. We calculate these weights daily, since some stations do not measure all 

weather metrics for all sample days. Fourth, we calculate a weighted weather metric for every 

MSOA-hour combination using the weights from step 3. Fifth, we calculate the monthly mean 

over the hourly measures to obtain weather observations for each MSOA-month combination. 

Final variables include monthly average temperature, monthly maximum temperature, monthly 

average humidity, and monthly maximum humidity.   

3.3 Pollution summary statistics   

The top panel of Table 1 summarizes overall pollution. For the period 1997-2006, 

average CO for urban and suburban areas in England was 0.71 milligrams per cubic meter 

(mg/m3). Average PM10 and average O3 were 25.6 and 52.6 micrograms per cubic meter 

(µg/m3), respectively. For perspective, UK health-based air quality regulations were based in 

part on standards of (1) a 10 mg/m3 8-hour running mean for CO, (2) a 50 µg/m3 daily mean for 

PM10, and (3) a 40  µg/m3 annual mean for PM10. Ozone regulations did not exist over the 

sample period, but published ozone air quality objectives were based on a 100 µg/m3 8-hour 

running mean.  

                                                 
7 A detailed description of the dataset is available at: http://badc.nerc.ac.uk/data/ukmo-midas/ukmo_guide.html . 
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Pollutant concentrations throughout England during the late 1990s and early 2000s were 

substantially lower than well-studied US pollutant concentrations during the 1990s. While direct 

comparisons are difficult, our CO, PM10, and O3 concentrations are approximately one-fifth to 

one-half of the US national concentrations over the same period as reported by the US 

Environmental Protection Agency (USEPA 2012). Relationships between these lower average 

pollution levels and health are important because many pollutants are declining throughout the 

industrialized world. Understanding current and future marginal benefits of pollution regulations 

requires an understanding of links between lower pollution exposures and health.  

 For the period 1997-2006, pollution varied considerably. The top panel of Table 1 

indicates that overall pollutant standard deviations were approximately 20 to 50 percent of mean 

pollution levels. The latter columns of the top panel suggest that dispersion is driven by 

variability across geographic areas and variability within areas across time. The middle panel of 

Table 1 explores seasonal variation. Seasonal peaks in CO occur in the fall and winter, when 

average levels are approximately 60 percent larger than average levels in the spring and summer. 

In contrast, seasonal peaks in O3 occur in spring and summer, when average levels are 

approximately 50 percent larger than average levels in the fall and winter. PM10 exhibits no 

strong seasonality.  

Figure 2 graphically depicts longer-run temporal variation. CO displays a clear long-term 

downward trend over our sample period. The quarterly high in CO of 1.24 mg/m3 occurred in 

quarter 1 of 2001 while the quarterly low of 0.39 mg/m3 in quarter 3 of 2006. In contrast, O3 

increased slightly on average over the sample period. The quarterly high in O3 of 74.4 µg/m3 

occurred in quarter 2 of 2006 while the quarterly low of 33.3 µg/m3 occurred in quarter 4 of 

2002. PM10 exhibited no obvious long-term trend over sample periods.   

The bottom panel of Table 1 explores regional variability. Here, regions are defined 

following 1996 U.K. standard government office region conventions. Some regions of England, 

including the North East, the North West, Merseyside and the West Midlands, had relatively 

lower average CO levels of about 0.5 mg/m3. Other regions, including London and the South 

West, had relatively higher average CO levels of about 0.9 mg/m3. Regional variability in O3 

was also observable, but proportionately somewhat lower than for CO. Some regions of England, 

including the North West, Yorkshire, the East Midlands, and London, had relatively lower 

average O3 levels of around 50 µg/m3. Other regions, including the North East and Merseyside, 
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had relatively higher average O3 levels of around 60 µg/m3 or higher. Regional variability in 

PM10 was small. 

 Our three pollutants are correlated with one another. The correlation coefficient between 

CO and O3 is -0.55. As noted above, this is at least partially driven by divergent long-term trends 

and opposite seasonal peaks. The correlation coefficient between CO and PM is +0.38. Since CO 

and PM generally do not experience similar trends over time, this correlation may be largely 

driven by geographic clustering. The correlation coefficient between PM and O3 is a relatively 

modest -0.09.  

3.4 Individual-level summary statistics   

Our final data construction step merges all data to the individual-by-month level. For 

each individual and each month, we assign pollution and weather outcomes based on last known 

residence. MSOA of residence is directly observed at every contact with a hospital or treatment 

center funded by the NHS, including birth, but not directly observed between contacts. We 

therefore infer a child’s residence in any given month based on last known residence. Potential 

issues arising from relocation are discussed in detail below, although we note here that we rarely 

observe a sample child relocating to another MSOA.  

We retain all individuals living in MSOAs with complete pollution data for all three 

contaminants and all months spanning birth through 2006. This procedure yields a final sample 

of 682,305 children, of which 320,082 have full control variables such as health-at-birth 

measures. Since we only retain children living within 10 miles of pollution and weather 

monitors, our sample children are predominantly located in urban and suburban areas.  

Table 2 presents individual-level summary statistics for the full analysis sample and for 

the subsample with individual-level covariates like health-at-birth indicators. Overall summary 

statistics are all consistent with English national health statistics. 49 percent of sample young 

children are boys. The average sample child was born at 3300 grams after 39.2 weeks of 

gestation to a mother who averaged 28.2 years of age. We observe no statistical differences in 

environmental exposures or respiratory health outcomes for the full sample and the subsample 

with more complete individual-level controls. 

 On average, 0.85 of 1000 children experienced a contact with an NHS hospital for 

diseases of the respiratory system in a given month. Table 3 shows that adverse health outcomes 

were strongly negatively correlated with child age. The mean of the outcome variable was 1.26 
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for 2 years olds and 0.50 for 6 year olds, and respiratory treatments fall monotonically as age 

increases. The mean of the outcome variable for boys was 1.02 while the mean of the outcome 

variable for girls is 0.67. The North West, Yorkshire and the Humber, and East Midlands regions 

have relative high mean children’s respiratory treatment rates, in the range of 1.55 – 1.84. North 

East, London, Eastern, and South West regions have relative low mean children’s respiratory 

treatment rates, in the range of 0.43 – 0.63.  

In the data, we observe relatively few cases of children experiencing many repeat visits. 

If we restrict attention to the subsample of children treated at an NHS facility for diseases of the 

respiratory system at least once while in our dataset (i.e. between their 2nd and 7th birthdays), 

we find that 80% of the sample had one and only one respiratory treatment. 14% had two 

respiratory treatments, 4% had three respiratory treatments, and less than 3% had four or more 

respiratory treatments.  

4. Relationships between pollution and children’s health outcomes 

 Our basic empirical strategy is to regress children’s health outcomes in a given month on 

one or more pollution measures. In principle, coefficients on these pollution measures represent 

the impact of marginal changes in pollution exposure on children’s respiratory outcomes. In 

practice, however, a number of challenges arise because pollution exposure is not randomly 

assigned. First, pollution exposure may be correlated with individual characteristics that directly 

influence childhood morbidity like demographics and maternal behavior. One notable concern is 

that household income and other socio-demographics may be correlated with pollution exposure 

through Tiebout sorting, as environmental quality may be reflected in housing prices (Chay et al. 

2003; Banzhaf and Walsh 2008; Bayer, Keohane, and Timmins 2009, Depro and Timmins 

2012). Second, while pollution exposure is highly seasonal, respiratory health outcomes may 

also be seasonal for reasons other than pollution. For example, evidence suggests that weather 

directly influences disease transmission and virus survival (Lowen et al. 2007; Lowen et al. 

2008; Shaman and Kohn 2009; Barreca 2012; Barreca and Shimshack 2012). Third, pollution 

exposure may be correlated with increased local area economic activity, which may feedback to 

health care quality and health outcomes (Knittel et al. 2009).  

Our dependent variable is an indicator for whether or not child i experienced one or more 

respiratory treatments in month t. More formally, our outcome variable is the indicator function 

1[treatmentit]. Outcome variables are initially defined over all respiratory treatments, 
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corresponding to ICD-10 codes beginning with the block code “J.” Later sensitivity analyses 

disaggregate outcome variables into more narrowly defined diagnosis code groups.  

Our key explanatory variables are pollution measures Pmt. We first consider average 

pollution over the contemporaneous month for each contaminant individually. For example, the 

explanatory variable may be the log of mean CO in individual i’s MSOA m during month t. 

Individual PM10 and O3 regression specifications are analogous. We augment individual 

contemporaneous exposure regressions with average monthly exposure over the previous year. 

For example, a CO regression may contain an additional explanatory variable representing the 

log of mean CO in individual i's MSOA m over the 12 months preceding month t. PM10 and O3 

regression specifications are analogous.8 In order to account for possible correlations between 

contaminants, we run regressions for all three pollutants and/or all lagged pollution measures 

simultaneously. 

 Critical controls include a nonlinear spline in age. The spline allows us to flexibly control 

for relationships between health and age at different points along the age distribution, but does 

not require us to impose a specific functional form ahead of time. Our spline is piecewise linear 

with 15 knots spread evenly over the observed life of each child15 evenly spaced knots (the 

piecewise linear segments join at ages 27, 31, 35, 39, 43, 47, 51, 55, 59, 63, 67, 71, 75, and 79 

months). To us, one of the important advantages of individual-level data is the ability to 

adequately control for child age. Our summary statistics show strong correlations between child 

age and respiratory health. According to the US Census Bureau Statistical Abstract, child age is 

highly correlated with health care utilization and hospitalization more broadly. Age may also be 

correlated with pollution exposure through time spent outdoors and activity choice. Without 

flexible controls for age, the potential for omitted variable bias is high. 

We also control for observable individual characteristics, seasonality, and common time 

trends. Observed time invariant individual characteristics include sex, birthweight, mother’s age 

at birth, and gestation at birth; these may be correlated with health outcomes and treatment 

propensities during childhood and may be correlated with pollution exposure via activity choice 

and other mechanisms Month-of-year (January? February? etc.) dummy variables account for 

                                                 
8 Models with variables reflecting average exposure over the previous year are equivalent to distributed lag models 
with monthly lags and coefficients constrained to be equal. An alternative approach is to regress health on a variable 
for each and every month over the last year, which allows the effects of different lags to have differential effects on 
health. However, as a practical matter, individual lagged pollution measures are highly collinear and separate 
identification is difficult. 
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seasonal environmental and economic factors common across all MSOAs and all years, and nest 

other common approaches like season-of-year (winter? spring? etc.) dummy variables. We 

account for annual changes in economic activity, general welfare, and respiratory health that are 

common across MSOAs with year dummy variables (fixed effects) and/or region-specific time 

trends.  

Our final set of explanatory variables control for weather variability. Weather may 

directly affect morbidity and mortality outcomes via virus survival, virus transmission, activity 

choice, and other mechanisms (Basu and Samet 2002, Braga et al. 2002, Lowen et al. 2007, 

Shaman and Kohn 2009, Barreca 2012, Barreca and Shimshack 2012). Weather may also be 

correlated with pollution through effects on chemical reactions, mixing, dispersal, and dilution. 

We therefore include variables for monthly average temperature, monthly average humidity, 

monthly maximum temperature, and monthly maximum humidity. We choose temperature and 

humidity since they are observed reliably and frequently in the MIDAS database. We focus on 

monthly averages for consistency with our other variables, for consistency with the related 

literature, and because fully modeling pollution transport is beyond the scope of the present 

analysis.9 

4.1 Three empirical approaches 

 We attempt to minimize remaining endogeneity concerns with three different empirical 

designs, each with its own strengths and weaknesses. We model an indicator for whether or not 

child i of age a living in MSOA m had a treatment in month t of season s and year y as: 

(1)  1[ ] ( ) ( )imtsy mt i mt y s i imtsytreatment P A t W t              . 

(2)  1[ ] ( )imtsy mt i i mt s ym imtsytreatment P X A t W             . 

(3)  1[ ] ( )iamtsy mt i mt y s am iamtsytreatment P X W t               . 

Pmt denotes one or more pollution measures, Xi denotes a vector of time invariant demographic 

characteristics, Ai(t) denotes a piecewise linear spline in child i's age at time t, Wmt denotes a 

vector of weather variables, ηy denotes year dummies (year fixed effects), ω(t) denotes region-

specific linear time trends, αs denotes month-of-year season dummies (month fixed effects), πi 

                                                 
9 Modeling weather with these variables alone is somewhat unsophisticated, but we share the view of Currie and 
Neidell (2005) that our approach should broadly capture the first-order effects of unusual or unseasonal weather 
swings that are not already captured by seasonality controls and local area or area-by-year fixed effects. Note that 
earlier versions of this paper included wind speed measures; including or omitting these factors had no substantive 
impact on estimated relationships between pollution and health.  
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denotes individual-level fixed effects, ξym denotes MSOA-by-year fixed effects, τam denotes 

MSOA-by-age fixed effects, and μ denotes a standard idiosyncratic error term.10  

Specification (1) focuses on addressing potential concerns about unobserved individual-

level heterogeneity. Recall that we control for several observed individual-level characteristics, 

weather, seasonality, and regional trends. Net of these effects, identification of the relationship 

between a given individual’s pollution exposure and morbidity comes from atypical deviations 

from that individual’s own average pollution exposure over all sample periods. Individual-level 

fixed effects control for income, race, education, health consciousness, maternal characteristics, 

prenatal pollution exposure, etc. They also control for time invariant neighborhood 

characteristics like general economic conditions, access to health care facilities, and local 

geography. Individual-level fixed effects also prevent bias due to Tiebout sorting driven by, or 

correlated with, average differences in pollution across MSOAs.  

In specification (2), identification of a given individual’s relationship between pollution 

and morbidity comes only from atypical within-MSOA deviations from area-average pollution 

exposure for that same year (again, net of observed individual-level characteristics, weather, 

seasonality, etc.). MSOA-by-year fixed effects control for an area’s time invariant average socio-

demographic characteristics like income, education, and race. They also control for time 

invariant neighborhood characteristics like general economic conditions, access to health care 

facilities, and local geography. More notably, MSOA-by-year fixed effects control for 

unobserved annual shocks common to all individuals within an MSOA. These shocks may affect 

localized economic activity, health care access, public policy outcomes, and many other factors. 

Note also that MSOA-by-year fixed effects allow for neighborhood specific trends in pollution. 

As such, specification (2) prevents bias due to Tiebout sorting driven by, or correlated with, 

average differences in pollution across MSOAs or even MSOA-specific trends in pollution.  

 Specification (3) leverages the multiple cohort and large t longitudinal nature of our 

dataset to combine advantageous aspects of specification (1) and specification (2). Here, 

identification of the relationship between pollution and morbidity comes from within-MSOA 

differences in pollution exposure for children of the same age but born at different times (yet 

                                                 
10 Regions are defined by the U.K. standard Government Office Regions. We do not include time invariant 
demographics in empirical model (1) as these controls are implicit in that fixed effect specification. We do not 
include region-specific time trends in empirical models (2) as these controls are implicit in those fixed effect 
specifications. 
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again, net of observed individual-level characteristics, weather, seasonality, etc.). The intuition is 

that children living in the same area but born several months to a few years apart are presumed 

similar and presumed to have grown up in similar circumstances, but face different pollution 

exposures at a given age because they reach that age at a different point in time.11  

4.2 Estimation Notes 

 Estimation of all specifications involves large numbers of observations. Our primary 

analysis sample consists of 329,082 children for whom detailed individual covariates are 

observed. Each child is observed over 60 months each, yielding 19,744,920 observations in total. 

A larger robustness sample consists of 682,305 children for whom fewer individual covariates 

are observed. Each child is again observed over 60 months each, yielding 40,938,300 

observations in total. All specifications involve thousands of fixed effects.  

We estimate a linear probability model, largely for reasons of computational tractability. 

Our goal is to assess the marginal effects of pollution on children’s health outcomes. While non-

linear models, such as the logit or probit, may more accurately fit the conditional expectation 

function, linear probability and non-linear models frequently generate very similar marginal 

effects (Angrist and Pischke 2009; Angrist and Evans 1998). An additional advantage is that we 

are not required to arbitrarily choose a non-linear functional form (Deaton 1997).12  

Within the linear probability model framework, we present multiple specifications for 

multiple identification strategies. We identify “preferred” specifications, however, using 

statistical intuition and more formal Bayesian Information Criterion (BIC). Since CO, O3, and 

PM are often correlated spatially and temporally, we consider specifications as preferred if they 

that simultaneously assess the impact of all three pollutants. Since evidence is mounting that 

longer-term pollution exposure impacts may differ from short-term pollution exposure impacts, 

                                                 
11 Consider two children living in same neighborhood. Because they grew up in the same area, they may be 
relatively similar. However, child A is born in January 1998 and Child B is born a year later in January 1999. Child 
A is then 36 months old in January 2001 and Child B is 36 months old in January 2002. When these two children are 
the same age (i.e. 36 months old), they experience different contemporaneous pollution exposures and they have 
experienced different pollution exposure histories over the previous year. In sum, they may experience similar 
background characteristics but differ in the probability of illness at a given age (i.e. 36 months old) due to 
differences in pollution exposure. 
12 One alternative approach to an LP model is to use case control sampling and estimate a probit, logit, or other non-
linear model. However, Knittel et al. (2009) demonstrated that pollution and health relationships are highly sensitive 
to case control choices, and case control estimates can be challenging to interpret. A second alternative approach 
would be a duration model, but duration models that allow for multiple spells and censoring while controlling for 
unobserved heterogeneity can be difficult to interpret, can require strong assumptions, and are computationally 
intractable given our large dataset. 
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we consider specifications as preferred if they simultaneously assess the impact of 

contemporaneous exposure and average exposure over the last year. BIC statistics consistently 

support our intuition; models with all pollution measures included simultaneously are preferred 

to alternatives on BIC grounds, even though BIC significantly penalizes adding unimportant 

information.          

 In order to control for serial correlation within cross-sectional units, as well as the 

heteroskedasticity that arises in linear probability models, we cluster all standard errors at the 

MSOA-level. Large sample sizes imply considerable statistical power and null hypotheses can be 

easy to reject (McCloskey and Ziliak 1996), even when combined with extensive fixed effect 

structures. To this end, we base all inference on a 1 percent level of significance.  

5. Results 

Regression results, corresponding to specifications (1) through (3), are presented in 

Tables 4-6. Results in Tables 4-6 come from analysis of the 329,082 children (19,744,920 

observations) for whom we observe more complete health-at-birth information. As discussed 

later in this section, key results are robust to the larger but less complete sample of 682,305 

children (40,938,300 observations). 

Before interpreting our key pollution results, we note the impact of control variables. 

Older children have far fewer respiratory treatments than younger children. Boys are more likely 

to be treated for illnesses of the respiratory system than girls. As expected, infants born to 

younger mothers, after longer gestation periods, and with higher birthweight have fewer 

respiratory treatments during childhood. Weather variables are statistically significant in some 

specifications and not statistically significant in others. When significant, temperature is 

positively associated with respiratory treatments and relative humidity is negatively associated 

with respiratory treatments. 

5.1 Effects of Contemporaneous Pollution Exposure 

Columns 1, 3, and 5 of Tables 4-6 present contemporaneous exposure results for 

pollutants evaluated separately. In all specifications with pollutants considered individually, 

increases in CO, PM10, and O3 exposure are positively associated with contemporaneous 

increases in children’s respiratory treatments. However, only the effects of carbon monoxide 

(CO) are statistically significant across all specifications. Column 7 of Tables 4-6 reveals the 

importance of considering pollutants simultaneously. CO and PM10 are positively correlated, 
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and independent estimates of the effects of PM10 on respiratory illness overstate that pollutant’s 

contribution to children’s health outcomes. O3 is negatively correlated with both CO and PM10, 

and independent estimates of the effects of O3 on respiratory illness understate that pollutant’s 

contribution to children’s health outcomes.  

When contemporaneous effects of pollution exposure are considered simultaneously, we 

find that both CO and O3 are statistically significant predictors of children’s respiratory 

treatments.  It is relatively straightforward to interpret the magnitude of these results. Column [7] 

results in Tables 4-6 show coefficients on CO exposure range from 0.18 to 0.19. Table 2 

indicates that the sample baseline probability of respiratory treatment in any given month is 0.85. 

The CO coefficients then imply that a ten percent increase in a month’s CO pollution increases 

the average child’s probability of respiratory treatment in that month by approximately 2.1 - 2.2 

percent.13 The O3 coefficients imply that a ten percent increase in a month’s O3 pollution levels 

increases the average child’s probability of respiratory treatment in that month by approximately 

2.5 – 3.3 percent. In contrast to the effects of CO and O3, PM10 coefficients are not statistically 

significant. On average, point estimates would have to be more than twice as large than present 

magnitudes to be statistically significant. Point estimates currently imply that a ten percent 

increase in a month’s PM10 pollution increases the average child’s contemporaneous probability 

of respiratory treatment in that month by 0.9 percent or less. 

5.2 Effects of Pollution Exposure over the Previous Year 

 Columns 2, 4, and 6 of Tables 4-6 present results for contemporaneous exposure and 

average monthly exposure over the previous year for pollutants evaluated separately. The only 

coefficient on exposure over the previous year that is statistically significant across all 

specifications is the coefficient on average CO exposure 1-12 months ago. Column 8 results, 

from specifications where pollutants are considered simultaneously, are similar. Again, the only 

longer-term coefficient that is statistically significant across the three identification approaches is 

the coefficient on average CO exposure 1-12 months ago. These coefficients range from 0.53 to 

1.73, suggesting that a ten percent increase in average monthly CO pollution over the past year 

increases the typical child’s probability of a respiratory treatment in a given month by 

                                                 
13 (0.19/0.82)*10 approximates the percentage effect of a 10% change in CO pollution. Later coefficients are 
interpreted similarly. 
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approximately 6.2 – 20.4 percent.14 Note that this effect occurs above and beyond the 

contemporaneous effect.  

6. Sensitivity Analysis 

Our results for the effects of contemporaneous CO and O3 on children’s respiratory 

outcomes are robust to three different research designs, each with different strengths and 

weaknesses. Contemporaneous results are robust to multiple specifications within each design. 

Results for the effects of CO exposure over the previous year on children’s subsequent 

respiratory outcomes are also robust to multiple research designs and specifications. In this 

section, we present results from additional sensitivity analyses designed to explore robustness 

further.  

6.1 Robustness to Sampling Choices 

Our first sensitivity check replicates the analyses in Tables 4 - 6 for the full sample of 

682,305 children (40,938,300 observations). This sample contains fewer individual-level 

controls, but analyzes relationships between pollution and health for approximately twice as 

many children. Summary results are presented in Tables 7. Results for CO are robust. 

Interpreting the contemporaneous CO coefficients in columns 2, 4, and 6 implies that a ten 

percent increase in a month’s CO pollution increases the average child’s probability of 

respiratory treatment in that month by approximately 1.0 - 2.4 percent. A ten percent increase in 

the previous year’s average CO pollution increases the typical child’s probability of a respiratory 

treatment in a given month by 3.0 – 15.3 percent. Results for the contemporaneous effects of O3 

appear to be somewhat less robust. Results are frequently not statistically significant, and 

magnitudes are systematically smaller. Interpreting the contemporaneous O3 coefficients in 

columns 2, 4, and 6 implies that a ten percent increase in a month’s O3 pollution increases the 

average child’s probability of respiratory treatment in that month by approximately 0.7 - 1.8 

percent. Generally, effects of contemporaneous and previous year PM10 are neither statistically 

significant nor practically important. In the MSOA-by-AGE specification in column 6 of Table 

7, we find a statistically significant negative coefficient on cumulative O3 effects. This result is 

not robust across the many specifications in Tables 4-7. It is possible that co-linearity may make 

separate identification of both cumulative and contemporaneous effects difficult. Also, avoidance 

                                                 
14 Note that, in our specifications, increasing total pollution by ten percent over the past year is equivalent to 
increasing average monthly pollution over the past year by ten percent.  
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behavior biases coefficients in a negative direction. If especially high cumulative O3 levels 

caused individuals to stay indoors more frequently, O3 levels could be negatively associated with 

respiratory health outcomes. 

6.2 Robustness to Falsification Tests 

Our second sensitivity check involves falsification tests that replicate previous analyses 

for injuries and fractures as outcome variables. More precisely, we replicate our analysis with a 

dependent variable that indicates one or more treatments for “injury” by child i in month t. 

Corresponding ICD-10 codes represent all blocks beginning with “S,” including treatments for 

injuries to the head, neck, back, arm, leg, elbow, shoulder, wrist, ankle, knee, and hip. The mean 

of the outcome variable is 0.26 and the standard deviation is 16.1.  

Table 8 summarizes falsification test results. We find no evidence of statistically 

significant relationships between contemporaneous pollution and children’s injuries and 

fractures. Coefficients are practically small in magnitude. Moreover, we find no evidence of 

statistically significant relationships between pollution exposure over the past year and children’s 

injuries and fractures. These placebo test results suggest that our primary results are unlikely to 

be driven by omitted variables correlated with both air pollution and general health or health 

treatments.  

6.3 Robustness to Pollution Exposure Specifications 

We analyze the health effects of pollution exposure defined by monthly averages. One 

natural concern is that especially high pollution concentrations, rather than average pollution 

concentrations, drive health outcomes. We therefore replicated our analysis using monthly 

maximum, rather than monthly average, exposures as the key contemporaneous explanatory 

variables.15 To be precise, max PM10 measures represent the highest daily mean of PM10 over 

all days in month t; max CO measures represent the highest 8-hour running mean of CO over all 

periods in month t; and max O3 measures represent the highest 8-hour running mean of O3 over 

all periods in month t. Table 9 demonstrates that CO results are broadly similar to results using 

average pollution concentrations. We continue to find a statistically significant and practically 

meaningful impact of contemporaneous CO exposure on children’s respiratory health outcomes. 

                                                 
15 An alternative approach involves including both average and maximum contemporaneous exposure variables in 
the same specification. However, average and maximum exposure measures are sufficiently collinear that separate 
identification is difficult. Note that we do not replicate exposure over the previous year with maximums,  as the goal 
of analyzing those variables is to pick up persistent effects. 
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However, we do note that the empirical magnitudes are somewhat smaller, perhaps suggesting 

that monthly average CO exposures influence health outcomes more than spikes in CO 

exposures, at least given the support of our data. We find no evidence that monthly maximum 

PM10 and O3 exposure adversely influences children’s respiratory health outcomes. 

We also replicated all analyses with pollution exposure variables defined over 20 mile 

radii, rather than 10-mile radii. Results are qualitatively and quantitatively similar to those in 

Tables 4-7. This similarity is perhaps not surprising ex-post, as urban pollution monitors are 

relatively dense in England and as we employ inverse distance weighting for exposure measures.  

6.4 Robustness to Specification Choices 

We log pollution exposure variables since the distribution of pollution across space and 

time is skewed. However, the precise functional relationship between pollution and health is 

unknown a priori. As a sensitivity analysis of functional form, we replicate all analyses using 

levels of pollution exposure – rather than logs of pollution exposure - for all air quality variables. 

We continue to find robust impacts of both short-term and longer-term CO exposure on 

children’s respiratory treatment outcomes.  

 As noted, our distinct fixed effect specifications have their own strengths and 

weaknesses. As a sensitivity analysis of research design, we replicated the analysis using 

specifications with individual-by-year fixed effects. Results are robust. Patterns of statistical 

significance and practical importance in regressions with individual-by-year fixed effects are 

similar to those in all other regressions (Tables 4 - 7). Moreover, magnitudes of significant 

coefficients in regressions with individual-by-year fixed effects lie between the magnitudes of 

corresponding coefficients in the regressions with individual-level fixed effects and regressions 

with MSOA-by-year fixed effects. This is perhaps unsurprising ex-post, as results from 

regressions with individual-by-year fixed effects should be similar to results from regressions 

with area-by-year fixed effects, provided individuals within local areas are relatively 

homogeneous.   

6.5 Disaggregating Respiratory Disease Classifications 

Our analyses consider outcomes defined over all diagnosis codes for diseases of the 

respiratory system (ICD-10 codes beginning with “J”). Such an aggregation affords us the most 

statistical variability and corresponds closely to aggregate social welfare considerations. 

However, the aggregate outcome variables may obscure the individual respiratory ailments 
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driving the results. We therefore replicated our analyses using more disaggregated diagnoses.16  

Table 10 present results. We find that short-run CO results appear to be largely driven by 

impacts on acute upper respiratory infections (including sinusitis) and acute lower respiratory 

infections (including acute bronchitis and acute bronchiolitis). Our longer-run CO results appear 

to be largely driven by impacts on acute upper respiratory infections (including sinusitis), acute 

lower respiratory infections (including acute bronchitis and acute bronchiolitis), and acute and 

chronic diseases of the upper respiratory tract (including rhinitis). Shorter and longer-run CO 

results do not appear to be driven by impacts on influenza and pneumonia or chronic lower 

respiratory diseases including asthma. We also find that short-run O3 results appear to be largely 

driven by impacts on acute upper respiratory infections (including sinusitis) and influenza and 

pneumonia. We continue to find no robust and statistically significant relationships between PM-

10 and childhood respiratory outcomes.17 

7. Discussion and Conclusion 

What have we learned? We find that: (1) observed health effects of CO and O3 for non-

infant children’s respiratory health outcomes are significant, and (2) exposure to CO over the 

previous year has a significant effect on observed children’s health that goes above and beyond 

contemporaneous exposure alone. Since the literature emphasizing the isolation of causal effects 

of pollution typically focuses on short-term outcomes for infants and adults, we believe our 

results add to the literature. Existing evidence emphasizing causal influences of criteria air 

pollution on non-fatal morbidity impacts for non-infant children is limited, existing evidence 

establishing causal influences of CO on respiratory outcomes is limited, and existing evidence 

supporting causal impacts of longer-term pollution exposure (especially CO exposure) is limited.   

Our results are robust across three distinct research designs that are designed to account 

for potential socioeconomic, behavioral, seasonality, and economic confounders. Results are also 

robust to multiple sampling choices, falsification tests, and specification checks. Nevertheless, 

                                                 
16 The relevant ICD-10 codes for these investigations are: J00-J06 for acute upper respiratory infections (including 
sinutis), J10-J18 for influenza and pneumonia, J20-J22 for other acute lower respiratory infections (including acute 
bronchitis and acute bronchiolitis), J30-J39 for other diseases of the upper respiratory tract (including rhinitis), and 
J40-J47 for chronic lower respiratory diseases (including asthma). 
17 In one specification, we find a statistically significant negative coefficient on a pollutant’s longer-term exposure 
variable. These results are not robust across the many specifications in Table 10, nor in the many specifications of 
Tables 4-9. It is possible that co-linearity may make separate identification of both cumulative and contemporaneous 
effects difficult. Also, avoidance behavior biases coefficients in a negative direction. If especially high cumulative 
pollution levels caused individuals to stay indoors more frequently, pollution could plausibly be negatively 
associated with respiratory health outcomes. 
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reliable identification and causal attribution can be difficult at the scale of analysis used in this 

paper, and we cannot rule out all possible confounding factors or other threats to internal 

validity. We are unable to identify a national-level natural experiment for our sample period. We 

know of no instrumental variable that plausibly satisfies exclusion restrictions for an entire 

nation over a lengthy period.18 Endogeneity concerns could possibly bias our estimates if omitted 

factors or measurement errors are correlated with anomalous, rather than typical, pollution 

outcomes at the highly local-level. 

We note other possible limitations to internal validity. First, we do not reliably observe 

mortality. Pollution may also cause deaths in young children; to the extent that these outcomes 

are important, our current estimates are understated. Second, we do not reliably observe children 

leaving England or the NHS system. Our research methods generate biased results only if such 

attrition is correlated with local trends in pollution. Moreover, net emigration from the U.K. is 

small, averaging less than half a percent of the population during our sample period (UKONS 

2012). Third, as is the case for virtually any observational study linking pollution and health, we 

do not perfectly observe individual-level pollution exposure. The density of air pollution 

monitors in urban areas of England is high, however, so we are able to examine smaller pollution 

radii than in many related studies. A similar concern, which is particular to our dataset, is that we 

observe an individual’s exact place of residence only when they come into contact with an NHS 

facility. In principle, a child that moves could be assigned the pollution exposure of their former 

MSOA for several periods – i.e. until they have a new health contact. In practice, however, few 

children move. In the subsample of children for whom we directly observe place of residence 

late in our sample window, more than 70 percent continue to reside in their MSOA of birth. 

Further, a stylized fact is that the overwhelming majority of UK moves are local. In our sample, 

the median observed move was 1.8 miles, as measured from MSOA centroid to MSOA centroid. 

95 percent of observed moves were less than 18 miles from centroid to centroid. Across all 

observed moves, the resulting change in pollution exposure was practically small and statistically 

zero. 

We do not observe adaptive behavior. Unobserved short-run avoidance behavior, such as 

children remaining indoors on high pollution days, may bias our results downwards relative to 

                                                 
18 Typical weather variables are not suitable as instrumental variables since they may directly influence health and 
thus violate exclusion restrictions. The atmospheric inversions used as instruments in Arceo-Gomez et al. (2012)’s 
exploration of pollution in Mexico City are not widespread in the U.K., and thus not available as instruments. 



25 
 

idealized estimates. Again, this implies current estimates are conservative. Unobserved long-run 

avoidance behavior, like relocation within England due to pollution, is important in other 

contexts but is unlikely to influence results here. As discussed above, moves that significantly 

change a household’s pollution exposure are rare. Given fixed effects specifications (including 

area-by-year fixed effects), only relocation due to unexpected or atypical within-year / within-

area pollution levels could bias our results. If households base location decisions on local 

average pollution levels, or even changes in local annual pollution levels, our results are 

unbiased. Further, estimates that are conditional on adaptive behaviors, such as ours, may be 

most directly relevant for some policy purposes. Our estimates capture the net effect of pollution 

in a real world complicated by human behavior. This differs from the effect of pollution one 

might observe in a fully controlled human exposure or toxicological study.19  

We also note caveats to external validity. First, we only model relationships between 

pollution and health outcomes for children living in urban and suburban areas. Results should not 

be extrapolated to children living in rural areas. Second, England is a developed country. Results 

should not be extrapolated to less developed nation contexts. Third, we observe lower average 

pollution concentrations than exist in many other urban areas of the developed world. For 

example, the average pollution concentrations in our sample are 20 to 50 percent of U.S. 

pollution concentrations over the same period. Results should be extrapolated to urban areas of 

other developed nations with caution.  

Other cautionary notes relate to our specific exposure measures. First, variable definitions 

are constrained by observation choices made by UK air quality authorities over our sample 

period.  While we find no statistically significant link between PM10 and health outcomes, it is 

possible that unobserved finer particulates such as PM2.5 significantly affect children’s 

respiratory health.20 Our observed health reactions to carbon monoxide may be driven by high 

correlations between CO and unmeasured toxic air pollutants also common in vehicle 

emissions.21 Second, our research design does not permit an evaluation of the full effects of 

cumulative lifetime pollution exposure on children’s respiratory health. Separately identifying 
                                                 
19 We thank a helpful reader for noting this interpretation. 
20 An additional explanation for failing to reject a null of no significant relationship between PM10 and children’s 
health outcomes is the lack of statistical variability. Summary statistics in Table 1 highlight that PM10 in our sample 
is proportionally less variable than CO and O3 across both space and time.  
21 This distinction is less important from a policy perspective, however, as most public programs and control 
technologies targeting CO are likely to reduce correlated air toxics as well. 
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cumulative lifetime pollution exposure with our individual-level fixed effects or our cohort-by-

MSOA fixed effects is not possible. So, while we do contribute original evidence on longer-term 

causal relationships between pollution and children’s respiratory health, our model may miss 

some potentially important truly long-run effects of pollution on children’s respiratory health. 

This paper suggests promising avenues for future research that are beyond the present 

scope. First, our analysis estimates the first-order relationships between pollution and young 

children’s respiratory health, but we do not explore the heterogeneity of pollution impacts in 

detail. A nuanced understanding of the welfare effects of pollution requires evaluating how 

pollution effects differ across age, income, education, and other demographic and socioeconomic 

factors. Second, our analysis estimates the aggregate impact of pollution on the total number of 

children’s respiratory health treatments, but we do not evaluate repeat treatments differently than 

first-time treatments. Repeat treatments are rare in our sample. Nevertheless, completely 

specified individual-level dynamics represents an important area of the ongoing research agenda 

exploring pollution and health.  

Subject to the above caveats, our results imply that a ten percent increase in a month’s 

CO pollution increases the average child’s probability of respiratory treatment in that month by 

approximately 2.1 - 2.2 percent. A ten percent increase in average monthly CO pollution over the 

past year also increases the typical child’s probability of a respiratory treatment in a given month 

by approximately 6.2 – 20.4 percent. How large are these detected impacts? The baseline number 

of monthly respiratory hospitalizations for our ~700,000 sample children was ~595 (0.85 

treatments per 1000 children per month). On average, carbon monoxide levels declined by 

approximately 7-10% each year throughout urban areas of England between 1997 and 2006. As 

an approximate guide to the magnitude of our results, consider a thought experiment in which the 

average annual CO reduction occurred in a single day. Starting immediately, results suggest that 

sample children’s respiratory hospitalizations would decline by roughly 10 – 15 per month due to 

the change in acute pollution exposure, ceteris paribus. One year later, results suggest that 

sample children’s respiratory hospitalizations would be an additional 30 – 120 cases per month 

lower due to the change in longer-term exposure, ceteris paribus.22  

                                                 
22 Few published studies generate results that are directly comparable to our results. Lleras-Muney (2010) finds that 
annual O3 exposure impacts military children’s hospitalizations. That study also finds suggestive, but less definitive, 
evidence for impacts of annual CO exposure. Impact magnitudes, however, are comparable across studies. In Lleras-
Muney (2010), a 15 increase in a year’s O3 exposure increases the probability of US children’s hospital admissions 
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Our analysis investigates the impact of pollution on respiratory outcomes that are severe 

enough to warrant hospital or clinical treatment; impacts for less severe respiratory outcomes are 

unobserved. Further, calculations in the preceding paragraph extrapolate regression estimates to 

a non-marginal context, do not fully account for transition dynamics, and apply only to a 

hypothetical one-time average pollution change. Relationships between health outcomes and 

costs of treatment, pain and suffering, and long-term human capital costs are complex. Thus, 

addressing the full welfare effects of pollution on children’s respiratory health is beyond the 

scope of this study. Nevertheless, our results do suggest that the understudied influence of 

criteria air pollutants on non-infant children’s respiratory health may be important. Further, our 

results are derived from a research setting where average air pollution concentrations are low 

relative to many urban areas of the developed world. This may suggest that the gross benefits of 

pollution reduction programs may remain high even as pollution continues to decline in the 

United States and elsewhere.  

                                                                                                                                                             
by 8-23 percent. We find that a 10 increase in year’s CO increases the probability of UK children’s hospital 
admissions by 2-3 percent due to acute effects and an additional 6-20 percent due to longer-term impacts.  
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Table 1. Pollution Summary Statistics 

 

OVERALL 
SUMMARY 

 
Mean  

 
Std. Dev 

Between 
MSOA  
std. dev. 

Within 
MSOA  
std. dev. 

     
Monthly Average CO (mg/m3) 0.71 0.33 0.20 0.26 
Monthly Average PM10 (µg/m3) 25.6 5.08 3.19 3.95 
Monthly Average O3 (µg/m3) 52.6 15.7 4.39 15.1 
     
SEASONAL  
VARIABILITY 

January-
March 

April -    
June 

July - 
September 

October – 
December 

     
Mean Average CO (mg/m3) 0.81 0.55 0.57 0.92 
Mean Average PM10 (µg/m3) 27.1 25.2 25.3 25.4 
Mean Average O3 (µg/m3) 47.3 69.1 58.0 36.6 
     
REGIONAL  
VARIABILITY 

[A] [B] [C] [D] [E] [F] [G] [H] [J] [K] 

           
Mean CO (mg/m3) 0.54 0.54 0.46 0.64 0.61 0.54 0.78 0.96 0.77 0.83 
Mean PM10 (µg/m3) 23.7 24.4 22.4 25.5 23.3 22.3 27.1 29.3 25.7 25.2 
Mean O3 (µg/m3) 63.5 50.7 59.7 52.7 52.0 57.0 53.5 49.5 55.3 57.5 
           
NOTES: All summarized data originally observed at the MSOA by month level. Regions are defined following U.K. 
Standard Government Office Regions Conventions for 1996-1998: A: North East; B: North West; C: Merseyside: D: 

Yorkshire & Humber; E: East Midlands: F: West Midlands; G: Eastern: H: London; J: South East 
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Table 2. Full Summary Statistics 

 
 Sample w/ Covariates 

(329,082 children) 
Full Sample 

(682,305 children) 
Variable Mean  Std. Dev Mean Std. Dev. 
Respiratory Treatments (#/1000) 0.85 29.1 0.82 28.7 
Monthly Average CO (mg/m3) 0.71 0.33 0.72 0.34 
Monthly Average PM10 (µg/m3) 25.6 5.1 25.7 5.1 
Monthly Average O3 (µg/m3) 52.6 15.7 52.5 15.7 
Monthly Mean Temp. (°C) 10.98 4.85 10.88 4.82 
Monthly Max Temp. (°C) 19.18 6.40 18.93 6.31 
Monthly Mean Humid. (rel. hum.) 78.60 8.31 79.07 8.15 
Monthly Max Humid. (rel. hum.) 97.77 3.07 97.93 2.93 
Age (months) 53.5 17.3 53.5 17.3 
Sex (male 1, female 2) 1.49 0.50 1.49 0.50 
Birthweight (grams) 3308 573 n/a n/a 
Maternal Age at Birth (years) 28.17 5.77 n/a n/a 
Gestation at Birth (weeks) 39.19 2.00 n/a n/a 
     

NOTES: Data observed at the child by month level. 
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Table 3. Respiratory Health Summary Statistics by Child Age 

Child Age  
(in years) 

Mean of treatment in month t Std Dev. Of treatment in month t 

   
2 1.26 35.5 
3 0.99 31.4 
4 0.85 29.1 
5 0.65 25.3 
6 0.50 22.4 
   

NOTES: Outcome variable is an indicator for a respiratory treatment by child i in month t, expressed in #/1000. 
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TABLE 4.  Effect of Pollution on Children’s Respiratory Treatments 

Individual-Level Fixed Effect Specifications (Equation 1) 
 

 [1] [2] [3] [4] [5] [6] [7] [8] 
Log (mean CO this month) 0.166* 

(0.042) 
0.136* 
(0.043) 

    0.179* 
(0.045) 

0.124* 
(0.046) 

Log (mean CO 1-12 months ago)   0.482* 
(0.105) 

     0.527* 
(0.108) 

Log (mean PM this month)   0.095 
(0.059) 

0.087 
(0.059) 

  0.075 
(0.063) 

0.106 
(0.062) 

Log (mean PM 1-12 months ago)     -0.319 
(0.190) 

   -0.413 
(0.211) 

Log (mean O3 this month)     0.209* 
(0.064) 

0.210* 
(0.064) 

0.283* 
(0.065) 

0.292* 
(0.066) 

Log (mean O3 1-12 months ago)       -0.087 
(0.182) 

 0.147 
(0.208) 

Region-specific Time Trends YES YES YES YES YES YES YES YES 
Piecewise Linear Spline in Age YES YES YES YES YES YES YES YES 
Weather Variables YES YES YES YES YES YES YES YES 
Month of Year Dummies YES YES YES YES YES YES YES YES 
Year Dummies YES YES YES YES YES YES YES YES 
Individual-Level Fixed Effects YES YES YES YES YES YES YES YES 
         
Observations 19,744,920 19,744,920 19,744,920 19,744,920 19,744,920 19,744,920 19,744,920 19,744,920 

Notes: * indicates statistical significance at the 1 percent level. 
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TABLE 5.  Effect of Pollution on Children’s Respiratory Treatments 

MSOA-by-YEAR Fixed Effect Specifications (Equation 2) 
 

 [1] [2] [3] [4] [5] [6] [7] [8] 
Log (mean CO this month) 0.188* 

(0.048) 
0.247* 
(0.049) 

    0.194* 
(0.053) 

0.246* 
(0.054) 

Log (mean CO 1-12 months ago)   1.790* 
(0.254) 

     1.727* 
(0.247) 

Log (mean PM this month)   0.120 
(0.060) 

0.141 
(0.062) 

  0.067 
(0.066) 

0.102 
(0.067) 

Log (mean PM 1-12 months ago)     0.397 
(0.222) 

   0.328 
(0.298) 

Log (mean O3 this month)     0.129 
(0.065) 

0.127 
(0.065) 

0.206* 
(0.067) 

0.160 
(0.068) 

Log (mean O3 1-12 months ago)       -0.362 
(0.221) 

 -0.394 
(0.303) 

Individual Controls YES YES YES YES YES YES YES YES 
Piecewise Linear Spline in Age YES YES YES YES YES YES YES YES 
Weather Variables YES YES YES YES YES YES YES YES 
Month of Year Dummies YES YES YES YES YES YES YES YES 
MSOA -by- YEAR Fixed Effects YES YES YES YES YES YES YES YES 
         
Observations 19,744,920 19,744,920 19,744,920 19,744,920 19,744,920 19,744,920 19,744,920 19,744,920 

Notes: * indicates statistical significance at the 1 percent level. 
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TABLE 6.  Effect of Pollution on Children’s Respiratory Treatments 
MSOA-by-AGE Fixed Effect Specifications (Equation 3) 

 
 [1] [2] [3] [4] [5] [6] [7] [8] 
Log (mean CO this month) 0.172* 

(0.045) 
0.161* 
(0.045) 

    0.185* 
(0.048) 

0.178* 
(0.049) 

Log (mean CO 1-12 months ago)   0.699* 
(0.137) 

     0.671* 
(0.136) 

Log (mean PM this month)   0.091 
(0.059) 

0.091 
(0.060) 

  0.054 
(0.063) 

0.067 
(0.064) 

Log (mean PM 1-12 months ago)     0.013 
(0.203) 

   0.031 
(0.238) 

Log (mean O3 this month)     0.163* 
(0.064) 

0.163* 
(0.065) 

0.233* 
(0.065) 

0.226* 
(0.066) 

Log (mean O3 1-12 months ago)       -0.385 
(0.197) 

 -0.313 
(0.237) 

Individual Controls YES YES YES YES YES YES YES YES 
Region-specific Time Trends YES YES YES YES YES YES YES YES 
Weather Variables YES YES YES YES YES YES YES YES 
Year Dummies YES YES YES YES YES YES YES YES 
Month of Year Dummies YES YES YES YES YES YES YES YES 
MSOA -by- AGE Fixed Effects YES YES YES YES YES YES YES YES 
         
Observations 19,744,920 19,744,920 19,744,920 19,744,920 19,744,920 19,744,920 19,744,920 19,744,920 

Notes: * indicates statistical significance at the 1 percent level. 
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TABLE 7.  Robustness: Sample Selection 

Full Sample without Individual-Level Control Variables 
 

 Specifications with 
Individual-Level FEs 

Specifications with 
MSOA-by-YEAR FEs 

Specifications with 
MSOA-by-AGE FEs 

 [1] [2] [3] [4] [5] [6] 
Log (mean CO this month) 0.110* 

(0.029) 
0.082* 
(0.029) 

0.166* 
(0.033) 

0.205* 
(0.033) 

0.174* 
(0.030) 

0.163* 
(0.031) 

Log (mean CO 1-12 months ago)  0.255* 
(0.069) 

 1.260* 
(0.162) 

 0.577* 
(0.083) 

Log (mean PM this month) 0.025 
(0.039) 

0.043 
(0.040) 

-0.001 
(0.042) 

0.025 
(0.043) 

-0.042 
(0.040) 

-0.031 
(0.040) 

Log (mean PM 1-12 months ago)  -0.114 
(0.125) 

 0.370 
(0.198) 

 0.072 
(0.147) 

Log (mean O3 this month) 0.156* 
(0.045) 

0.156* 
(0.045) 

0.108 
(0.045) 

0.063 
(0.047) 

0.089 
(0.044) 

0.076 
(0.045) 

Log (mean O3 1-12 months ago)   0.094 
(0.137) 

 -0.555 
(0.222) 

 -0.548* 
(0.169) 

Piecewise Linear Spline in Age YES YES YES YES NO NO 
Weather Variables YES YES YES YES YES YES 
Month of Year Dummies YES YES YES YES YES YES 
Year Dummies YES YES NO NO YES YES 
Region-specific Time Trends YES YES NO NO YES YES 
       
Observations 40,938,300 40,938,300 40,938,300 40,938,300 40,938,300 40,938,300 

Notes: * indicates statistical significance at the 1 percent level. 
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TABLE 8. Robustness:  Placebo Tests 

Effect of Pollution on Children’s Treatments for Fractures and Injuries 
 

 Specifications with 
Individual-Level FEs 

Specifications with 
MSOA-by-YEAR FEs 

Specifications with 
MSOA-by-AGE FEs 

Log (mean CO this month) -0.031 
(0.025) 

-0.042 
(0.028) 

-0.009 
(0.026) 

Log (mean CO 1-12 months ago) 0.080 
(0.058) 

0.248 
(0.136) 

0.125 
(0.071) 

Log (mean PM this month) -0.025 
(0.035) 

0.001 
(0.037) 

-0.026 
(0.035) 

Log (mean PM 1-12 months ago) 0.129 
(0.099) 

0.257 
(0.161) 

0.212 
(0.128) 

Log (mean O3 this month) -0.055 
(0.036) 

-0.066 
(0.038) 

-0.066 
(0.036) 

Log (mean O3 1-12 months ago)  -0.101 
(0.108) 

-0.281 
(0.174) 

-0.240 
(0.138) 

Piecewise Linear Spline in Age YES YES YES 
Weather Variables YES YES YES 
Month of Year Dummies YES YES YES 
Year Dummies YES YES YES 
    
Observations 19,744,920 19,744,920 19,744,920 
Notes: * indicates statistical significance at the 1 percent level. Corresponding ICD-10 codes represent all blocks beginning with 

“S,” including treatments for injuries to the head, neck, back, arm, leg, elbow, shoulder, wrist, ankle, knee, and hip. 
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TABLE 9.  Robustness: Specification 
Effect of Maximum Pollution Exposure on Children’s Respiratory Treatments 

 
 Specifications with 

Individual-Level FEs 
Specifications with 

MSOA-by-YEAR FEs 
Specifications with 

MSOA-by-AGE FEs 
 [1] [2] [3] [4] [5] [6] 
Log (maximum CO this month) 0.128* 

(0.032) 
0.095* 
(0.020) 

0.131* 
(0.033) 

0.112* 
(0.021) 

0.131* 
(0.032) 

0.124* 
(0.021) 

Log (maximum PM this month) -0.024 
(0.035) 

-0.006 
(0.023) 

-0.018 
(0.036) 

-0.001 
(0.023) 

-0.031 
(0.036) 

-0.024 
(0.023) 

Log (maximum O3 this month) 0.104 
(0.056) 

-0.006 
(0.038) 

0.005 
(0.058) 

-0.080 
(0.039) 

0.018 
(0.056) 

-0.075 
(0.038) 

Additional Individual Controls NO NO YES NO YES NO 
Piecewise Linear Spline in Age YES YES YES YES YES YES 
Weather Variables YES YES YES YES YES YES 
Month of Year Dummies YES YES YES YES YES YES 
Year Dummies YES YES YES YES YES YES 
       
Observations 19,744,920 40,938,300 19,744,920 40,938,300 19,744,920 40,938,300 

Notes: * indicates statistical significance at the 1 percent level. 
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TABLE 10.  Effect of Pollution on Children’s Respiratory Treatments: Disaggregated Diagnosis Codes 
 

  J00-J06   J10-J18   J20-J22  

 [1] [2] [3] [1] [2] [3] [1] [2] [3] 
Log (CO this month) 0.083* 

(0.209) 
0.138* 
(0.034) 

0.115* 
(0.030) 

0.026 
(0.012) 

0.021 
(0.014) 

0.021 
(0.013) 

0.031 
(0.013) 

0.049* 
(0.015) 

0.038* 
(0.014) 

Log (CO 1-12 months ago)  0.188* 
(0.070) 

0.514* 
(0.141) 

0.146 
(0.080) 

0.027 
(0.030) 

0.031 
(0.066) 

0.012 
(0.036) 

0.083* 
(0.027) 

0.263* 
(0.066) 

0.102* 
(0.035) 

Log (PM this month) 0.122* 
(0.039) 

0.104 
(0.043) 

0.077 
(0.040) 

0.005 
(0.017) 

0.006 
(0.018) 

0.004 
(0.017) 

-0.010 
(0.017) 

-0.020 
(0.018) 

-0.014 
(0.017) 

Log (PM 1-12 months ago)  0.020 
(0.124) 

0.450 
(0.179) 

0.249 
(0.144) 

0.012 
(0.053) 

-0.007 
(0.081) 

-0.033 
(0.062) 

0.017 
(0.056) 

-0.035 
(0.073) 

0.014 
(0.062) 

Log (O3 this month) 0.195* 
(0.042) 

0.133* 
(0.044) 

0.139* 
(0.043) 

0.071* 
(0.018) 

0.076* 
(0.019) 

0.074* 
(0.018) 

0.045 
(0.018) 

0.036 
(0.018) 

0.049* 
(0.018) 

Log (O3 1-12 months ago)  0.026 
(0.122) 

-0.324 
(0.182) 

-0.309 
(0.146) 

-0.095 
(0.059) 

-0.130 
(0.083) 

-0.067 
(0.064) 

-0.185* 
(0.058) 

-0.146 
(0.073) 

-0.172* 
(0.059) 

Individual Controls NO YES YES NO YES YES NO YES YES 
Region-specific Time Trends YES NO YES YES NO YES YES NO YES 
Spline in Age YES YES NO YES YES NO YES YES NO 
Weather Variables YES YES YES YES YES YES YES YES YES 
Month of Year Dummies YES YES YES YES YES YES YES YES YES 
Year Dummies YES NO YES YES NO YES YES NO YES 
          
Observations 19744920 19744920 19744920 19744920 19744920 19744920 19744920 19744920 19744920 
Notes: * indicates statistical significance at the 1 percent level. The relevant ICD-10 codes for these investigations are: J00-J06 for acute upper respiratory 
infections (including sinutis), J10-J18 for influenza and pneumonia, J20-J22 for other acute lower respiratory infections (including acute bronchitis and acute 
bronchiolitis), J30-J39 for other diseases of the upper respiratory tract (including rhinitis), and J40-J47 for chronic lower respiratory diseases (including asthma). 
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TABLE 10 (Continued).   Effect of Pollution on Children’s Respiratory Treatments: Disaggregated Diagnosis Codes 
 

  J30-J39   J40-J47  

 [1] [2] [3] [1] [2] [3] 
Log (CO this month) 0.010 

(0.021) 
0.066* 
(0.024) 

0.020 
(0.022) 

-0.017 
(0.021) 

-0.017 
(0.024) 

-0.006 
(0.022) 

Log (CO 1-12 months ago)  0.091 
(0.049) 

0.749* 
(0.129) 

0.269* 
(0.066) 

0.118 
(0.048) 

0.132 
(0.092) 

0.126 
(0.056) 

Log (PM this month) 0.018 
(0.030) 

0.026 
(0.031) 

0.037 
(0.030) 

-0.024 
(0.031) 

-0.016 
(0.031) 

-0.033 
(0.030) 

Log (PM 1-12 months ago)  -0.179 
(0.091) 

-0.093 
(0.155) 

-0.041 
(0.115) 

-0.242* 
(0.090) 

0.009 
(0.128) 

-0.120 
(0.107) 

Log (O3 this month) -0.010 
(0.030) 

-0.036 
(0.033) 

-0.019 
(0.031) 

-0.020 
(0.030) 

-0.051 
(0.030) 

-0.018 
(0.030) 

Log (O3 1-12 months ago)  0.141 
(0.095) 

0.065 
(0.164) 

0.035 
(0.120) 

0.220 
(0.093) 

0.128 
(0.130) 

0.169 
(0.108) 

Individual Controls NO YES YES NO YES YES 
Region-specific Time Trends YES NO YES YES NO YES 
Spline in Age YES YES NO YES YES NO 
Weather Variables YES YES YES YES YES YES 
Month of Year Dummies YES YES YES YES YES YES 
Year Dummies YES NO YES YES NO YES 
       
Observations 19,744,920 19,744,920 19,744,920 19,744,920 19,744,920 19,744,920 

Notes: * indicates statistical significance at the 1 percent level. The relevant ICD-10 codes for these investigations are: J00-J06 for 
acute upper respiratory infections (including sinutis), J10-J18 for influenza and pneumonia, J20-J22 for other acute lower respiratory 
infections (including acute bronchitis and acute bronchiolitis), J30-J39 for other diseases of the upper respiratory tract (including 
rhinitis), and J40-J47 for chronic lower respiratory diseases (including asthma). 

 
 
 


