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School Buses, Diesel Emissions, and Respiratory Health  
JEL I18, Q58, Q53 
 
 
ABSTRACT 
 
 School buses contribute disproportionately to ambient air quality, pollute near 

schools and residential areas, and their emissions collect within passenger cabins. This 

paper examines the impact of school bus emissions reductions programs on health 

outcomes. A key contribution relative to the broader literature is that we examine 

localized pollution reduction programs at a fine level of aggregation. We find that school 

bus retrofits induced reductions in bronchitis, asthma, and pneumonia incidence for at-

risk populations. Back of the envelope calculations suggest conservative benefit-cost 

ratios between 7:1 and16:1. 
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1. Introduction 

Pollution regulations are controversial, and economists and policy-makers debate 

their efficiency and cost effectiveness. Most economic evaluations of environmental 

quality examine the impact of ambient air pollution on health outcomes.1 These studies 

are important for understanding national policy, but they are unlikely to shed light on 

programs targeting localized pollution exposure because widely dispersed ambient air 

quality monitors hide large local differences in pollution. Moreover, localized pollution 

policies may be especially effective at the margin; the basic insight is that abating 

pollution where people live, work, and study may return large benefits per dollar of cost.  

 This paper studies the health impacts and cost effectiveness of a new localized 

emissions reduction program that retrofits diesel school buses with aggressive pollution 

control technologies. We focus on school buses for several reasons. First, the particulate 

matter and air toxics common in diesel pollution may be responsible for as many as 

15,000 premature deaths annually. In some regions, diesel mortality levels are similar to 

those of traffic accidents and second-hand smoke (CA Air Resources Board 2002). 

Second, school buses are ubiquitous. In 2005, buses carried nearly 25 million children 

between 5 and 6 billion miles in the United States. Third, school buses are 

disproportionately dirty. The national average bus age is over 9 years, and estimates 

suggest that the average school bus emits twice as many contaminants per mile as the 

average tractor-trailer truck (Monahan 2006). Fourth, school bus pollution has important 

local effects. In contrast to most diesel vehicles, buses primarily travel through residential 

areas and so individuals who are sensitive to pollution may be affected by bus emissions 

                                                 
1 Notable studies in this vein include Chay et al. (2003), Chay and Greenstone (2003), Neidell (2004), 
Currie and Neidell (2005), Currie et al. (2009), and Janke et al. (2009). 
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where they live. Diesel air pollutants also collect inside of passenger cabins and in 

schoolyards, so school-aged children may be further impacted. Recent research finds that 

within-bus concentrations of particulate matter and air toxics were 4 to 12 times higher 

than ambient pollution levels. 

 Despite the potentially large health benefits of school bus retrofit programs, we 

know very little about their impacts. The dearth of empirical studies stems from at least 

two challenges. First, many of these programs are relatively new and data are scarce. Our 

study uses a comprehensive dataset on bus retrofits from the state of Washington, and 

detailed information includes retrofit type, retrofit date, and retrofit cost. We combine the 

novel program data with comprehensive morbidity and demographic data at the school 

district level. Second, statistical identification can be challenging. Health outcomes may 

drive program adoption or significant unobservables may influence both program 

adoption and health outcomes. We exploit a natural experiment and employ a 

differences-in-differences research design to help isolate causal impacts. Treatment 

school districts retrofitted eligible buses by the end of our sample period and control 

school districts retrofitted no buses by the end of our sample period. Identification 

exploits differences in adoption timing, rather than the adoption decision itself, as nearly 

all non-adopters began retrofits shortly after our sample period ends.  

We find that school bus retrofits induced statistically significant and large 

reductions in bronchitis, asthma, and pneumonia incidence for both children and adults 

with chronic respiratory conditions. Empirical magnitudes are typically larger for 

children’s health outcomes than for chronically-ill adult outcomes. Results, especially for 

asthma and bronchitis incidence, are robust to several falsification and sensitivity checks. 



 4

Most notably, while adopters and non-adopters experienced differential trends in health 

outcomes over the retrofit period, adopters and non-adopters experienced comparable 

trends in the pre-retrofit period. Adopters and non-adopters also experienced comparable 

trends over the retrofit period for illnesses plausibly unrelated to air quality. 

 To put our results in context, we combine our empirical results with the cost-of-

treatment health valuation literature and perform a back of the envelope benefit-cost 

analysis. We conservatively estimate program benefits between 7 and 16 times program 

costs. This interpretation suggests that if the many states not aggressively pursuing school 

bus retrofits were to do so, social benefits are potentially large. Buses are an inexpensive 

and safe means of transport (in an accident sense), but our results suggest that they could 

be made safer (in the broadest sense) at modest cost. 

We believe our analysis makes three contributions. First, our data and methods 

permit the first empirical economic assessment of the impact of school bus retrofit 

programs on morbidity outcomes. Second, we show that local pollution policies can 

significantly impact public health, and that these programs may produce a large “bang per 

buck.” Third, our results may provide additional evidence on the broader effects of air 

pollution on health.2 We cannot directly trace retrofit programs to lower ambient 

pollution levels, since our spatial unit of analysis is significantly smaller than the spatial 

distribution of pollution monitors. However, we do show that a program targeting air 

pollution exposure significantly reduces illnesses plausibly related to air quality (and only 

those illnesses). 

                                                 
2 In this sense, our paper is in the spirit of recent work by Currie and Walker (2011), Schlenker and Walker 
(2010), and Moretti and Neidell (2011).  
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The paper proceeds as follows. Section 2 provides institutional detail on school 

buses, diesel emissions, retrofit programs, and respiratory health. Section 3 describes our 

unique retrofit, demographic, weather, and health data. Section 4 presents our empirical 

methods and Section 5 presents key results. Section 6 explores our identification and 

other empirical assumptions. Section 7 provides a conservative back of the envelope 

benefit-cost assessment and concludes.  

2. Background 
School buses and diesel emissions 
 

Diesel emissions make up a substantial portion of ambient air pollution. 

Particulate matter from diesel engines accounts for 26 percent of total air pollution from 

fuel combustion and 66 percent of particulate air pollution from on-road sources 

(American Lung Association (2008)). On-road mobile sources emissions are often the 

largest single source of air pollution in a region.  

 School buses are common and polluting. In 2005, 25 million children traveled 

between 5 and 6 billion miles on school buses in the United States. Median routes for 

many of the buses in our sample were approximately 6 miles each way. The average child 

riding these buses spent nearly 45 minutes per day on the bus (Adar et al. (2008)). The 

average bus age in the United States is over 9 years, and the average is substantially 

higher in many states. Research indicates that, per mile, school buses are twice as 

polluting as semi trucks. The average bus emits nearly 15 pounds of particulate matter 

and approximately 400 pounds of smog-forming nitrogen oxides and hydrocarbons per 

year (Monahan 2006).   

In addition to affecting background ambient air quality, school bus diesel 

pollution has important local effects. Since buses travel through residential areas, their 
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emissions may impact at-risk individuals at a neighborhood level. Research indicates that 

people living near roads are exposed to pollution levels that are significantly greater than 

broad ambient levels (Pearson et al. (2000) and Wilhelm and Ritz (2003)). Further, 

emissions from groups of buses idling outside schools can concentrate pollution within 

schoolyards and schools themselves. 

Pollution exposure may be particularly high for children who ride buses. Air 

pollution concentrations inside mobile sources may be as much as 10 times background 

ambient levels (Shikiya et al. (1989), Chan et al. (1991) and Lawryk et al. (1996)). Diesel 

emissions collect through mechanisms such as direct flows from leaks or cracks in the 

crankcase or exhaust system. Such leaks or cracks may be more common in school buses 

than in other vehicles, as school bus engines are often less regularly maintained (Behrentz 

2004). Adar et al. (2008) installed pollution monitors in a subset of the vehicles in our 

study. Their estimates suggest that within-bus concentrations of harmful particulates were 

more than twice roadway concentrations and 4 times ambient levels. Related studies 

found that within-school bus concentrations of particulate matter and air toxics were 4 to 

12 times higher than ambient levels (Wargo et. al. (2002) and Sabin et. al. (2005)).  

Diesel emissions and respiratory health 

 Diesel fumes contain high levels of particulate matter, other air toxics, nitrogen 

oxides, and hydrocarbons. Even at relatively low levels, these contaminants are known to 

exacerbate or cause asthma and other respiratory ailments. Daily changes in air pollution 

have been linked to daily changes in mortality, hospital admissions, and other public 

health indicators ((Spix et al. (1998), Brunekreef and Holgate (2002), Dockery (2009)).). 

Air toxics defined broadly are associated with asthma, lung inflammation, coughing, 
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wheezing, and reduced lung function (Peden (2002)).  The fine particulate matter 

common in diesel emissions is linked to reduced lung function and increased incidences 

of pneumonia (Cohen and Nikula (1999) and Mcreanor et al. (2007)). Nitrogen oxides 

cause ground-level ozone, and high ozone concentrations are associated with aggravated 

respiratory illness and increased respiratory symptoms. 

 All children are potentially susceptible to the adverse effects of particulates and 

ozone (Committee on Environmental Health (2004)). Impacts on children are due to 

ongoing physiological respiratory development, smaller average lung size, and increased 

activity levels. The fine particulates contained in diesel exhaust have been shown to 

contribute significantly to children’s morbidity and mortality, especially reduced lung 

function and lung growth (Gauderman et al. (2000) and Gauderman et al. (2004)). Diesel 

fumes can also increase the severity of children’s asthma and can induce asthma in 

otherwise healthy children (McConnell et al. (2002) and Peters et al. (2004)). In contrast 

to children’s morbidity, adult morbidity is pronounced only for individuals with pre-

existing respiratory ailments. 

Clean school bus initiatives 

 This study examines the impacts of the Washington State Clean School Bus 

Program. Washington was an aggressive early adopter of retrofits, but their program is 

otherwise similar to those under consideration or under way in other states. State senate 

bill ESSB6072 provided $5 million in annual funding for the five years spanning 2003-

2008. The legislation’s primary goal was to retrofit older school buses with modern 

pollution control equipment. Legislative priorities included targeting buses with model 

years prior to 1994, since retrofitting older buses yields greater emissions reductions than 
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retrofitting newer buses (Boyer and Lyons (2004)).   

 Under ESSB6072, the state offered school districts complete retrofit rebates. 

Further, a small number of districts were eligible for federal funding from the US 

Environmental Protection Agency’s Clean School Bus USA Program. Washington’s 

Department of Ecology (DOE) and the state’s seven air quality control agencies 

administered the program. Washington emphasized retrofits, and approximately 88 

percent of expenditures were devoted to equipment installations in the program’s first 

operational year. About 7 percent of expenditures were devoted to administration and less 

than 5 percent went to low sulfur diesel fuel programs. 

 Adopting districts typically began retrofits by installing diesel oxidation catalysts 

(DOCs). DOCs are add-on ceramic substrate devices that catalyze chemical reactions in 

emissions, breaking down harmful pollutants into less harmful substances. On average, 

DOCs are expected to reduce particulates from these vehicles by approximately 20-30 

percent and hydrocarbons by as much as 50-70 percent.  

More recently, the program coupled DOC retrofits with additional crankcase 

ventilation filter (CCV) retrofits. The primary advantage of CCVs is that they reduce 

within-bus pollution. CCVs are add-on devices that filter unburned fuel and blow-by 

gases from the crankcase, the largest chamber of most diesel engines. When CCVs are 

installed, they are almost always coupled with diesel oxidation catalysts. CCVs are 

expected to reduce PM levels by 10-20 percent more than DOCs alone and may reduce 

within-bus concentrations by much greater margins.3 

                                                 
3 After our sample period ends, the state moved towards greater use of low sulfur diesel fuel and greater use 
of diesel particulate filters. Both were extremely rare during our sample period, and remain relatively rare. 
However, increased penetration of these pollution control methods suggests that the marginal benefits of 
conventional retrofits will decrease over time.  



 9

Retrofit timing and scope 

According to interviews with program staff members, the total number of districts 

retrofitting at a given time was largely determined by external budget considerations. 

While the state initially promised $5 million in regular installments, actual funding 

arrived at irregular and unpredictable intervals. Thus, the actual timing of program 

adoption across districts was exogenous to the districts themselves. 

The order in which districts participated was driven by many factors. Program 

managers approached school district administrators early in our sample period. Most 

administrators offered permission to proceed with retrofits provided their bus fleet 

managers also agreed. A few administrators were slow in responding to agency requests. 

Conversations with school administrators suggested that unrelated administrative burdens 

may explain slow response during the sample period. Some districts’ mechanics, once 

reached, immediately agreed to start retrofits. Many, however, wanted to see evidence 

that other districts had adopted the program without substantial disruptions to their buses 

or normal work schedules. These fleet managers eventually came on board, but often 

required sustained persuasion over time including repeated visits by DOE staff. 

Once a district began the retrofit process, implementation scope was largely 

determined by available technologies and bus characteristics. Program managers and 

contractors maintained that buses with model years prior to 1982 were largely unsuited 

for retrofits. Diesel oxidation catalysts alone were most appropriate for buses with model 

years from 1982 to 1987. For most buses with model years later than 1987, DOCs 

coupled with CCVs were the appropriate technologies. Retrofitting newer buses with 

DOCs or CCVs was rarely cost effective. Since technology and bus fleet characteristics 
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usually determined the number of buses retrofitted and retrofit type, program scope was 

essentially exogenous to the district. As a rule, adopters retrofitted all suitable buses.  

Linking retrofits and health 

 To summarize much of the preceding background section, school bus retrofits 

should substantially reduce emissions of diesel-related toxics, particulates, and other 

contaminants. These emissions reductions should in turn improve the respiratory health 

of at-risk individuals. First, bus tailpipe emissions impact background air quality as well 

as localized air quality in residential neighborhoods and near schools. The retrofits may 

therefore reduce adverse respiratory health outcomes for both adults with chronic 

respiratory illness and children. Second, since bus emissions may concentrate within 

passenger cabins and in schoolyards, retrofits should further reduce children’s pollution 

exposure.  

Two details bear noting. First, the relative health benefits of retrofits for children 

versus adults with chronic conditions are unknown a priori. While children may 

experience reduced exposure from retrofits through improvements in both inside-bus and 

outside-bus air quality, individuals with chronic conditions may be especially sensitive to 

changes in contaminant exposure. Second, health outcomes may respond quickly to 

changes in diesel emissions exposure. The medical literature indicates that hospital 

admissions and other public health outcomes respond to day-to-day variations in air 

pollution (Spix et al. (1998), Brunekreef and Holgate (2002), Dockery (2009)).  

Our background section also raises an additional issue. While many elements that 

influenced adoption timing and scope were plausibly exogenous, some factors that 

influenced adoption status may have been nonrandom and correlated with other elements 
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influencing health. A plausible research design must therefore be robust to some non-

random assignment. We adopt a natural experiment estimation strategy that is robust to 

endogeneity in levels and we explore the validity of our identifying assumptions in detail. 

3. Data 
 
 Our data allow the first empirical assessment of the health benefits stemming 

from school bus retrofit programs. We use program data from the Washington State 

Department of Ecology and the Puget Sound Clean Air Agency. We use hospital 

discharge data from the Washington State Department of Health. We also augment 

retrofit and health data with demographic data from the National Center of Educational 

Statistics and temperature and precipitation data from the US Historical Climatology 

Network.  

 Our administrative retrofit database consists of approximately 4000 buses in 53 

school districts of the Puget Sound area. We focus on the state of Washington because it 

is an innovator in school bus programs. We examine specifically the Puget Sound region 

due to extensive administrative data collection and the relative homogeneity of districts. 

For each bus in the area, we observe information related to equipment installations such 

as the retrofit type (DOC/CCV), the date of the retrofit, and the cost of the retrofit. Bus-

specific data are aggregated to the district level to construct a fleet profile consisting of 

the cumulative share of buses having undergone each type of retrofit.  

 Data on health outcomes from 1996 to 2006 were extracted from the Washington 

State Comprehensive Hospital Abstract Reporting System (CHARS). CHARS data 

include a complete record of hospital inpatient discharges. Each observation consists of 

treatment date, patient age, patient sex, patient home zip code, and a detailed diagnosis 
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code. Illness-specific data is aggregated to the month level by summing the number of 

illnesses in each diagnosis code for each zip code over individual days. We obtain a 

profile of respiratory illness incidence for at-risk populations (which we define to be 

children and adults with chronic conditions) within each zip code each month.  

Since we focus on an air pollution control program, our primary analysis 

emphasizes the major respiratory ailments: bronchitis, asthma, pleurisy, and pneumonia.4 

Bronchitis, asthma, and pneumonia outcomes for at-risk populations have been linked to 

air contaminants. To the best of our knowledge, pleurisy has not been linked to the 

pollutants common in diesel exhaust. However, CHARS diagnosis codes aggregate 

pneumonia with pleurisy.5 Any potential measurement error from including pleurisy 

biases our program impacts towards zero and reduces statistical precision. No related 

measurement error is present for the analysis of asthma and bronchitis.  

We match all data, including retrofit, health, demographic, and weather data, at 

the school-district by month level. Details of the matching procedure are provided in the 

data appendix. Bus fleets and retrofit programs are managed at the district level, so data 

analysis at spatial scales finer than school districts (e.g. zip codes or schools) would 

artificially inflate precision. Some health outcomes are rare events, so data analysis at 

temporal scales finer than months (e.g. days or weeks) would not ensure meaningful 

variation in outcome measures.  

4. Methods   

                                                 
4 The relevant diagnosis-related group (DRG) codes are 089, 091, 096, and 098. For each disease category, 
we consider the diagnosis group for children and for adults with chronic conditions.  
5 Pleurisy is an inflammation of the mucus membrane enveloping the lungs and rib cage. Individuals 
suffering from pleurisy typically report difficult and painful breathing. 
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Our goal is to assess the impact of retrofits on health outcomes for those districts 

that retrofitted eligible buses. Since we have a panel dataset, it is perhaps tempting to 

assess these impacts by simply comparing adopting districts’ pre-retrofit health outcomes 

with post-retrofit health outcomes. However, we cannot attribute changes in health 

outcomes after the retrofits to the retrofits alone. The clearest way to isolate causal effects 

of the retrofits, accounting for confounding factors, would be to examine outcome 

differences between randomly assigned adopter districts and non-adopter districts over 

time. While this is not possible ex-post, our methods mimic this general structure.  

Two-Period, Two-Group Difference-in-Differences 

Our first empirical design is a standard two-period difference-in-differences 

approach. Here, we examine differential trends for adopter districts and non-adopter 

districts over time. If non-adopters provide information on the expected health outcome 

trends for adopters had adoption not occurred, the quasi-experiment afforded by the 

difference-in-differences in outcomes across adopting and non-adopting districts should 

remove the effect of confounding factors and isolate the effect of bus retrofits on health 

outcomes. Note that the analysis that follows exploits differences in adoption timing 

rather than differences in adoption decisions, as most non-adopters began retrofits after 

our sample period ended. 

Some notation is helpful in presenting the estimator. Two groups g∈[a,b] 

experience health outcomes y in two periods t∈[1,2]. YR is the health outcome in the 

presence of the retrofit treatment and YNR is the health outcome in the absence of the 

retrofit treatment. Group a is the non-adopter control group, group b is the adopter 
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treatment group, t=1 is the pre-treatment time period, and t=2 is the post-treatment time 

period. The treatment is observed only if g=b and t=2.  

In our two period difference-in-differences context, time t=1 corresponds to 2002, 

the year before retrofits began in earnest, and time t=2 corresponds to 2006, the last 

sample year. Group g=b typically corresponds to the 34 districts that had completed 

significant retrofits by the beginning of the 2006/2007 school year. In practice, these 

treatment districts retrofitted more than 30 percent of their total bus fleet with diesel 

oxidation catalysts (DOCs) and/or crankcase ventilation filters (CCVs) by the beginning 

of the 2006/2007 school year. Alternatively, group g=b may correspond to the 8 district 

subset of the broader treatment group that had significantly augmented DOC retrofits 

with more aggressive CCV retrofits. In practice, these alternative treatment districts 

retrofitted more than 10 percent of their total bus fleet with CCVs by the beginning of the 

2006/2007 school year. In all cases, group g=a corresponds to the 9 districts that 

retrofitted no buses by the start of the 2006/2007 school year. Districts that are neither 

treatment nor control are dropped from the main two period, two group analysis. 

In the most basic model, the average treatment effect on the treated in the 

presence of retrofits can be written as: 

(1)  τ
DID = E[Yb2

R ] − E[Yb2
NR ] = E[Yb2 ] − E[Yb1] − ( E[Ya 2 ] − E[Ya1]) . 

A regression analog to this model allows us to control for observable differences in the 

distribution of characteristics of the treatment and control groups. This regression model 

is parameterized following the difference-in-differences literature, and can be written as: 

(2) y = α +δt + γ g + βt ⋅ g + π X + ε , 
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where y continues to represent health outcomes. In practice, we normalize respiratory 

health outcomes as the ratio of illness cases to affected population numbers.6 X represents 

a vector of control variables including per capita income, poverty status, racial 

composition, and school staff per student ratios. ε  represents the standard idiosyncratic 

disturbance term. The coefficient δ  represents the effect of time on health outcomes for 

the non-treated group and γ  represents the effect of the treatment on health outcomes in 

the pre-treatment period. β  is the coefficient of interest, and it is our estimator for the 

difference-in-differences effect of the treatment on the treated  (the regression analog of

DIDτ ). 

The key difference-in-difference assumption is that non-adopters would 

experience the same trends in health outcomes as adopters absent the treatment, after 

conditioning on observables. Table 1 shows that demographic characteristics are 

generally similar across adoption classification groups. Adopters and non-adopters have 

statistically indistinguishable per capita income, poverty status, racial composition, and 

school staff per student ratios. Moreover, bus fleet average age is similar between adopter 

and non-adopter districts. Treatment districts are systematically larger, but we analyze 

health outcome variables scaled by population size. While demographics are generally 

similar across adoption classification groups, the final rows of Table 1 indicate that 

respiratory health treatments are significantly more common among early adopting 

districts. This suggests that it is possible that adoption timing across districts was not 

purely random. However, this is not necessarily a concern. Our difference-in-differences 

strategy is robustness to endogeneity in health levels; initial health may differ across 

                                                 
6 For children, the ratio is respiratory illness cases among children per 100,000 children. For adults, the 
ratio is respiratory cases among adults with chronic conditions per 100,000 adults. 
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groups as long as expected trends (conditional on the covariates) are expected to be 

similar across the groups absent the treatment. We test this key assumption for pre-

treatment periods, and our later sensitivity section devotes considerable attention to the 

plausibility of all identifying assumptions in the model. 

In all two period difference-in-differences analyses, we omit July and August 

from the sample since schools were not in session during those months. The resulting 

general dataset consists of 860 observations: we observe 34 treatment districts and 9 

control districts over 10 months in 2002 (before the retrofits) and over 10 months in 2006 

(after the retrofits). A parallel dataset for examining the impact of retrofits that emphasize 

more aggressive crankcase ventilation filter (CCV) installations consists of 340 

observations: we observe 8 treatment districts and 9 control districts over 10 months in 

2002 (before the retrofits) and over 10 months in 2006 (after the retrofits). 

In all two period analyses, we cluster standard errors to allow for arbitrary within-

group correlations at the district level. We cluster over individual districts as they 

represent the unit of analysis. Clustered standard errors are then used to test difference-in-

difference hypotheses against one-sided alternatives. We hypothesize that our key 

difference-in-differences results (the impacts of retrofits on illness outcomes) will be 

negative, so the appropriate alternative hypothesis is a non-negative coefficient. 

Results from two-period, two-group difference-in-differences approaches are 

presented in Table 2. Clustered standard errors are reported in parentheses below the 

coefficient estimates. We defer interpretation of our key two-period, two-group 

difference-in-difference coefficients to the next section, but we note here the impact of 

controls on health outcomes. Districts with higher proportions of their population below 
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the poverty line experienced more respiratory ailments on average, especially for pleurisy 

and pneumonia. Districts with greater staff-student ratios and higher percentages of white 

students experienced fewer respiratory ailments on average. Interestingly, districts with 

older bus fleets experienced statistically more respiratory ailments on average, supporting 

the basic hypothesis that diesel school buses impact respiratory health for children and 

adults with chronic conditions. Warmer and wetter districts, on average, experienced 

fewer respiratory ailments on average. 

Multiple Period Approaches 

We believe the two-period, two-group difference-in-differences approach outlined 

above offers several advantages. First, it facilitates a transparent econometric analysis 

and generates readily interpretable empirical estimates (i.e. ‘what happens if an average 

district retrofits its eligible buses?’). Second, the validity of the identifying assumptions 

can be more directly assessed. Third, the two-period, two-group approach imposes very 

little parametric structure on the problem. Imposing linearity, which implies the 

relationship between a district’s share of buses retrofitted and health outcomes is exactly 

the same at every retrofit level and in every time period, is a strong assumption. Precise 

dose-response relationships in the real world are very difficult to understand a priori, so 

we prefer a specification that imposes little structure on relationships about which we 

have no functional form guidance. 

Nevertheless, the intuition of the difference-in-differences identification strategy 

can be applied in more general settings with multiple time periods and multiple treatment 

classifications. This approach imposes significantly more structure on the problem, but 

exploits more information about the extent and exact timing of retrofit adoption. Our 
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multiple time period regression model, for district i in month m of year t, can be most 

generally written as: 

(3) yitm = α i + λt + βRitm +πXitm + εitm , 

where y continues to represent health outcomes scaled by affected population numbers.  

αi are district-level fixed effects, which control for average group status and time 

invariant factors like income, poverty status, racial composition, school staff ratios, and 

relative bus fleet age. λt are year (time) dummies and X represents a vector of time 

varying controls including month dummies and weather variables. ε continues to 

represent an idiosyncratic disturbance term. 

 In (3), R is a retrofit policy variable that takes one of four possible forms. First, 

the policy variable may be an indicator variable for a district that had completed 

significant retrofits of any kind by month m of year t. This variable takes a value of 1 

when a district retrofitted more than 30 percent of their total bus fleet with diesel 

oxidation catalysts (DOCs) and/or crankcase ventilation filters (CCVs). Second, the 

policy variable may be an indicator variable for a district that had completed significant 

CCV retrofits by month m of year t. This variable takes a value of 1 when the district 

retrofitted more than 10 percent of their total bus fleet with CCVs. Third, the policy 

variable may represent a district’s continuous share of buses retrofitted with any 

technology prior to (inclusive of) month m of year t. Finally, the policy variable may 

represent a district’s continuous share of buses retrofitted with CCVs prior to (inclusive 

of) month m of year t. 

 In all multiple period analyses, we omit July and August from the sample since 

schools were not in session during those months. The resulting dataset consists of 5830 
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observations: we observe all 53 districts over 10 months for each of the 11 years 

spanning 1996 (the earliest year for which we were able to obtain health data) to 2006 

(the last year we were able to obtain health and program data).  

We again cluster standard errors to allow for arbitrary within-group correlations at 

the district level. We cluster over individual districts as they represent the unit of 

analysis. Clustered standard errors are then used to test program impact hypotheses 

against one-sided alternatives. We continue to hypothesize that the impacts of retrofits on 

illness outcomes will be negative, so the appropriate alternative hypothesis is a non-

negative coefficient. 

Results from multiple period regression specifications are presented in Table 3. 

Clustered standard errors are reported in parentheses below the coefficient estimates. We 

defer interpretation of our key multiple group multiple time period difference-in-

difference coefficients to the next section, but we note here the impact of several controls. 

There were no obvious monotonic trends in respiratory ailments across years. Within 

years, respiratory ailments tended to be lowest in the late fall. Finally, on average, 

warmer districts experienced fewer respiratory ailments. 

5. Results 

The two-period, two-group difference-in-differences coefficients presented in row 

1 of Table 2 are all large in magnitude and for the most part statistically significant. 

Results in columns 1-3 provide the impact of significant retrofits for adopting districts on 

asthma and bronchitis outcomes when treatment classification is defined by the adoption 

of any type of retrofit technology. After controlling for changes to a quasi-control group, 

adopter districts experienced 2.9 fewer bronchitis and asthma cases per 100,000 
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individuals per month. More specifically, after controlling for confounders, adopter 

districts experienced 5.4 fewer asthma and bronchitis cases per 100,000 children per 

month and 1.8 fewer asthma and bronchitis cases for those with chronic conditions per 

100,000 adults per month. These are substantial changes: 5.4 cases per 100,000 children 

per month is a 23 percent drop relative to pre-retrofit (2002) levels for the adopter 

districts.  

Results in columns 7-9 of Table 2 provide the impact of significant retrofits on 

asthma and bronchitis outcomes for adopting districts, when treatment classification is 

defined only by the adoption of more aggressive crankcase ventilation filter (CCV) 

installations. Recall that CCV retrofits typically augment diesel oxidation catalysts with 

add-on devices that further reduce contaminants, especially within buses. After 

controlling for changes to a quasi-control group, CCV adopter districts experienced 4.3 

fewer bronchitis and asthma cases per 100,000 individuals per month. More specifically, 

after controlling for confounders, CCV adopter districts experienced 10.2 fewer asthma 

and bronchitis cases per 100,000 children per month and 1.8 fewer asthma and bronchitis 

cases for those with chronic conditions per 100,000 adults per month. Again, these are 

substantial changes: 10.2 cases per 100,000 children per month is a 33 percent drop 

relative to pre-retrofit (2002) levels for the CCV adopter districts. 

Results in columns 4-6 and 10-12 of Table 2 provide the impact of significant 

retrofits on pneumonia and pleurisy outcomes for adopting districts. Treatment 

classification in columns 4-6 is defined by the adoption of any type of retrofit technology 

and treatment classification in columns 10-12 is defined only by the adoption of more 

aggressive crankcase ventilation filter (CCV) installations. In general, the results suggest 
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that retrofits influence pneumonia outcomes, but perhaps only for children. After 

controlling for changes to a quasi-control group, adopter districts experienced 4.1 fewer 

pneumonia cases per 100,000 children per month. CCV adopter districts experienced 5.1 

fewer pneumonia cases per 100,000 children per month. For context, note that 4.1 cases 

per 100,000 children is a 37 percent drop relative to pre-retrofit (2002) levels for the ‘any 

technology adopter’ districts and 5.1 cases per 100,000 children is a 40 percent drop 

relative to pre-retrofit (2002) levels for the ‘CCV adopter’ districts. In contrast to results 

for children, results presenting the impact of retrofits on pneumonia outcomes for adults 

with chronic conditions are statistically insignificant and often small relative to pre-

retrofit levels. 

Multiple period regression results in Table 3 suggest that asthma and bronchitis 

results are reasonably robust to specification. Results in column 1 indicate that a district 

that retrofits more than 30 percent of its bus fleet with any technology experiences 0.81 

fewer asthma and bronchitis cases per 100,000 individuals per month. These results 

suggest that, on average, a retrofitting district experiences an approximately 10 percent 

reduction in asthma and bronchitis cases (across both children and adults with chronic 

conditions) relative to its pre-adoption (2002) baseline levels. Results in column 2 

indicate that a 10 percent increase in the share of buses retrofitted with any technology is 

associated with 0.194 fewer bronchitis or asthma cases per month. These results suggest 

that, on average, a retrofitting district experiences an approximately 2.3 percent reduction 

in asthma and bronchitis cases (across both children and adults with chronic conditions) 

for every 10% of its bus fleet that is retrofitted. Bronchitis and asthma effects of CCV 

installations, presented in columns 3 and 4 of Table 3, are similar in magnitude to ‘any 
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retrofit technology’ results. These CCV results are not, however, statistically significant. 

This may reflect smaller statistical variation in technology adoption for CCVs or non-

linearity in dose-responses relationships for CCV installations.7 

Multiple period regression results in columns 5-8 of Table 3 indicate that 

pneumonia and pleurisy results are not robust to the multiple period specifications. While 

all of the difference-in-differences coefficients are negative, none are statistically 

significantly different from zero. This is not necessarily surprising, since pleurisy has not 

been linked to pollutants commonly found in diesel exhaust. Measurement error induced 

by Department of Health data aggregations can substantially reduce statistical precision. 

Note, however, that coefficient magnitudes for the CCV retrofit impacts are broadly 

similar to asthma and bronchitis results. For example, results in column 8 indicate that a 

10 percent increase in the share of buses retrofitted with CCVs is associated with 0.312 

fewer pneumonia cases per month. These results suggest that, on average, a retrofitting 

district experiences an approximately 1.7 percent reduction in pneumonia cases (across 

both children and adults with chronic conditions) for every 10% of its bus fleet that is 

retrofitted. 

6. Robustness 
 
Robustness: Identifying Assumptions 
 

                                                 
7 In continuous specifications, we observe 53 districts over 10 months (July/August omitted) for each of the 
11 years spanning 1996 to 2006. Within and between variations for key variables are as follows. Bronchitis 
and asthma cases among at-risk groups – 8.14, 2.41; Pleurisy and pneumonia cases among at-risk groups – 
15.21, 4.03; discrete adoption for all retrofits – 0.29, 0.08; continuous adoption for all retrofits – 0.15, 0.04; 
discrete adoption for CCV retrofits – 0.14, 0.06; continuous adoption for CCV retrofits – 0.06, 0.02. Two 
issues bear noting. First, within variation is always greater than between variation, suggesting that fixed 
effects models generally have a source of variation. Second, variation for all retrofit variables is 
substantially greater than variation for CCV retrofit variables. This smaller variation may affect statistical 
precision in CCV multiple period regression results. 
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 As is often the case in real world policy evaluations, our treatment status may not 

be randomly assigned. The difference-in-differences research design, however, still 

estimates the policy relevant average treatment effect on the treated as long as health 

trends are uncorrelated with adoption. This section explores the plausibility of our 

identifying assumptions. For transparency, we focus all robustness checks on the simpler 

two-period, two-group model. Note that these falsification test results are not sensitive to 

modeling choices. 

What are the concerns? It is possible a priori that some group-specific trends are 

correlated with treatment status. Suppose, for example, that some unobserved factor was 

associated with both a decrease in health incidences and an increased likelihood of school 

bus retrofits. Active policy-makers might implement other air pollution or public health 

policies in conjunction with clean school bus programs. Or, suppose that school districts 

that experienced or expected falling health outcomes over time were more likely to adopt 

Clean School Bus programs. Finally, suppose that illness incidence was declining for 

both adopter and non-adopters due to unobservables but adopters’ incidence was 

declining faster due to higher initial illness incidence and non-linear responses to 

unobservables. In all of these cases, difference-in-difference results may be biased. 

However, some simple sensitivity analyses alleviate these concerns: 

• Adopters and non-adopters experienced the same trends in health outcomes until 

retrofits were actually installed. We replicated our analysis in periods before 

adoption occurred. Columns 1 through 6 of Table 4 show that adopter districts 

had similar changes in respiratory ailments to non-adopter districts between 1996 

and 2001, before retrofits began in earnest. Other pre-retrofit year comparisons 
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yield similar results. As before, adopters sometimes had significantly higher 

initial levels of respiratory illness, but difference-in-difference coefficients were 

always insignificant. Standard errors were similar in magnitude or larger than the 

estimated coefficients themselves. In other words, improvements in health 

outcomes for adopters relative to non-adopters only appear over the sample period 

when retrofits were installed.  

• For illnesses plausibly unrelated to air quality, adopters and non-adopters 

experienced similar health trends over the sample period. We replicated our 

difference-in-differences regressions for gastrointestinal diseases and 

kidney/urinary tract illnesses.8 These are the most commonly treated non-

respiratory ailments. Results in columns 7 through 12 of Table 4 show no 

significant differences in other illness changes between treated and quasi-control 

districts over our sample period, even though initial health outcome levels can 

differ. In other words, treatment and control districts experienced differential 

trends for diseases plausibly related to air quality, and only for diseases plausibly 

related to air quality. 

• For individuals plausibly unaffected by air quality, adopter and non-adopter 

districts experienced similar health trends over the sample period. We replicated 

our difference-in-differences regressions for adults without chronic respiratory 

conditions. These individuals should not be sensitive to marginal changes in air 

quality. Results in columns 13 and 14 of Table 4 show no consistent difference in 

major respiratory ailment differences for healthy adults between treatment and 

control groups. In other words, treatment and control districts experienced 
                                                 
8 The relevant diagnosis-related group (DRG) codes are 182, 184, 320, and 322. 



 25

differential respiratory health trends for individuals plausibly sensitive to air 

quality, and only for individuals plausibly sensitive to air quality. 

• Adopters and non-adopters experienced the same trends in health outcomes 

during summer months, when buses operate much less frequently. We replicated 

our analysis, but only for months when school was not in session. In other words, 

we performed a falsification test leveraging the fact that buses run infrequently 

during the summer. Results indicated that adopters have statistical significantly 

higher initial levels of respiratory illness during summer months, but the key 

difference-in-difference coefficients were always statistically insignificant. In 

other words, significant improvements in health outcomes for adopters relative to 

non-adopters only appear in months where buses are active.9 

• Non-adopters do not systematically experience falling respiratory health 

outcomes. Results on the post-treatment dummy in Tables 4 and 2 indicate that 

non-adopters experienced no statistically significant trends in respiratory health 

outcomes over the pre-retrofit period (1996-2001) or over the retrofit sample 

period (2002-2006). As a result, it is not possible that illness incidence was 

declining for all districts due to unobservables. Our results cannot be explained by 

non-linear responses to common factors causing illness declines in all districts. 

• Adopters and non-adopters do not systematically differ on most important 

characteristics. Results in Table 1 show that demographic characteristics are 

similar across adoption classification. Adopters and non-adopters have 

statistically indistinguishable per capita income, poverty status, racial 
                                                 
9 A relatively quick change in the response of health outcomes to changes in exposure is consistent with 
epidemiological evidence on the short-run effects of air pollution (Spix et al. (1998), Brunekreef and 
Holgate (2002), Dockery (2009)).  
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composition, and school staff per student ratios. Bus fleet average age is also 

similar between adopter and non-adopter districts. Treatment districts are 

systematically larger, but we analyze health outcome variables scaled by 

population size. Again note that most non-adopters adopt the program shortly 

after our sample period ends. 

• School bus retrofit decisions and implementation occur at the school district level. 

In contrast, most air quality and public health programs are instituted at the 

county, state, or national level.  

Robustness: Specification 

In the two-period – two-group analysis, treatment status does not vary within the 

year. A possible concern is that district by month cells induce artificial statistical 

precision. To address this we use clustered standard errors, which allow for arbitrary 

within-district serial correlation. Nevertheless, as a sensitivity check, we repeated our 

two-period analysis using annual data. Results are in the first six columns of Appendix 

Table A1. Point estimates were very slightly smaller and standard error magnitudes were 

very slightly larger, but results were identical for all practical purposes. 

In the two-period – two-group analysis, we omit districts with retrofits in progress 

from the treatment group. These districts are included in the multiple period analysis. 

Nevertheless, as a sensitivity check, we repeated the two-period analysis including 

omitted districts in the treatment group. Results are in the latter six columns of Appendix 

Table A1. As expected with a less cleanly identified control group (which now includes 

districts with retrofits in progress), difference-in-differences point estimates were smaller 
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in absolute value. Nevertheless, signs and statistical significance were similar to 

presented results.  

In the two-period – two-group analysis, as well as the multiple period – two-group 

analysis, our ‘adopter’ thresholds are admittedly ad hoc. As a sensitivity check, we 

repeated all two-group analyses using both lower and higher adoption thresholds. 

Specifically, we increased the adoption threshold from thirty to forty percent and then 

subsequently decreased the adoption threshold from thirty to twenty percent. Results are 

in Appendix Table A2. Patterns of statistical significance were unchanged. As expected, 

lower adoption thresholds generally yielded somewhat smaller health impact point 

estimates and higher adoption thresholds yielded somewhat larger health impact point 

estimates. 

In the two-period, two-group analysis, we scale our dependent variable by 

population. This control function approach is an especially flexible way to account for the 

influence of population. Further, our multiple period analysis contains fixed effects which 

inherently condition on factors like population. Nevertheless, as a sensitivity check, we 

repeated the two-period analysis with a specification that uses a dependent variable that is 

not scaled by population and includes an explanatory variable for population. Results are 

in Appendix Table A3. Note that coefficient magnitudes are not directly comparable to 

coefficient magnitudes in the main results. Sign patterns, however, were identical and 

results were more significant statistically.  

7. Discussion and Interpretation 
 

This paper analyzes the impact of school bus emissions reductions on human 

health. We find that school bus retrofits induced statistically significant and large 



 28

reductions in bronchitis, asthma, and pneumonia incidence for children and adults with 

chronic conditions. Broad findings are robust to a host of sensitivity checks, including 

falsification tests examining the pre-retrofit period, diseases not associated with pollution, 

and individuals not sensitive to marginal changes in air quality. Results for bronchitis and 

asthma are very robust to specification as well; results for pneumonia are less so.  

Findings from our preferred specifications indicate that adopter districts 

experienced 23 percent fewer children’s bronchitis and asthma cases per month, relative 

to a control group. These same districts also experienced 37 percent fewer children’s 

pneumonia cases per month. We also typically find larger effects for the CCV retrofits, 

suggesting that the more modern crankcase ventilation filters may play a larger role in 

health improvements than diesel oxidation catalysts alone.  

Asthma and bronchitis illness reductions occurred for both children and adults 

with chronic conditions. This suggests that clean school bus programs may impact 

background and localized air quality. However, when we detect significant pneumonia 

illness reductions, they occur for children but not for adults with chronic conditions. 

While there are several plausible explanations, these results are consistent with school 

bus programs further impacting public health through reductions in within-bus exposure. 

Our analysis permits the first empirical economic assessment of school bus 

programs and illness outcomes. However, we note several limitations. First, we do not 

directly observe individual-level health and bus ridership data. We assume that children 

ride buses near where they live and that the share of bus ridership across treatment and 

control districts does not differentially change over time. Second, our analysis only 

considers acute, short-run responses to pollution exposure. Cumulative effects may also 
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matter; to the extent that these responses are important, our program impact results are 

understated. Third, we are unable to directly examine the impact of bus programs on air 

quality. Only seven air pollution monitors regularly measure air quality in the entire four-

county Puget Sound region, and most have incomplete data, so we cannot separately 

match monitors to treatment and control areas. Fourth, people with vulnerable children 

may move into retrofitting districts. We do not see evidence for selective migration on a 

large-scale, as student populations at non-adopting districts grew by 6.3 percent over the 

retrofit period while student populations at adopting districts grew by only 2.2 percent. 

To the extent that migration as averting behavior is important, however, our program 

impact results are understated. 

We also note caveats to external validity. First, Washington’s respiratory illness 

rates are among the highest in the nation. Second, the Puget Sound region of Washington 

is whiter, wealthier, and less dense than most other urban areas in the United States. 

Extrapolating the numerical benefits of retrofits from our dataset to other contexts may 

misrepresent the case. Nevertheless, we would be surprised if overall policy implications 

differed substantially across the country since detected retrofit benefits were very large in 

our study area.  

 Several interesting directions for future research arise from this analysis. First, 

Currie et al. (2009) show that pollution influences school absences, so absences might 

provide some evidence on the human capital impacts of retrofits programs. Such an 

exploration is beyond the scope of this paper, however, as the Washington state schools 

in our sample were not required to track excused absences for our sample period. Second, 

we would ideally compare our results to a “cash for clunkers” school bus program or to a 
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low sulfur diesel school bus program. Unfortunately, we do not have the data to run the 

necessary empirical evaluations ourselves, and we are unaware of any other studies that 

provide the necessary empirical estimates for these comparisons.   

Our empirical analysis investigates the impact of retrofits on incidences of 

bronchitis, asthma, and pneumonia severe enough to warrant hospital or clinical 

treatment. Retrofit impacts for less severe respiratory illnesses are unobserved. Further, 

the relationships between health outcomes and communicable disease transmission, pain 

and suffering considerations, and long-term welfare effects are complex. Addressing the 

full benefits and costs of bus retrofits are beyond the scope of this study. However, in 

order to provide an approximate guide to the economic significance of our results, we 

combine our empirical point estimates with cost-of-treatment health valuation estimates 

and observed retrofit costs to compute a conservative back of the envelope benefit-cost 

assessment of school bus retrofits.  

The medical literature estimates health care costs per inpatient episode of 

bronchitis, asthma, and pneumonia at approximately $3000-$7000/visit. See, for 

example, Stanford et al. (1999) and Lave et al. (1999), for a more complete discussion. 

The average school district in our dataset serves approximately 10000 children. For the 

average district, our crankcase ventilation filter (CCV) coefficients translate 

approximately into 12.2 avoided hospital visits for children’s asthma and bronchitis per 

year.10 Similarly, CCV coefficients translate approximately into 6.1 avoided hospital 

visits for children’s pneumonia and pleurisy per year. Estimates of a single district’s 

annual benefits for children’s health from observed CCV adoption range from 

                                                 
10 The relevant DID coefficient in column 8 of Table 2 is -10.2 cases per 100000 students. (10.2/100000) × 
10000 students × 12 months = 12.2. 
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approximately $54,900 to $128,100 (18.3 visits times $3000/visit and 18.3 times 

$7000/visit). Again, these benefit calculations exclude non-respiratory illnesses, long-

term health effects, suffering considerations, and any impacts on adults with chronic 

respiratory conditions.  

 The average CCV adopting district retrofitted approximately 25 eligible buses of 

its 66 total buses with CCVs over the sample period. Each CCV retrofit cost 

approximately $1200 in total, including parts, labor, and testing. Most CCVs are coupled 

with pre-existing DOCs. Each DOC retrofit cost approximately $1300 in total, including 

parts, labor, and testing. Therefore, the average adopter school district spent 

approximately $62,500 (25 buses times $2500) on CCV retrofits. Total CCV retrofit costs 

are likely less than annual benefits for children alone. Assuming a 5 percent discount rate 

and a useful retrofit life of 10 years, the net present value children’s health benefits are 

between 424,000 and 989,000 dollars per adopter school district.11 Even excluding 

benefits to adults with chronic conditions and omitting suffering considerations, the ratio 

of present value benefits to present value costs ranges between 7:1 and 16:1. This 

interpretation suggests that if the many states not aggressively pursuing school bus 

retrofits were to do so, potential social benefits are likely to be large. 

 For perspective, best estimates suggest that the benefit-cost ratios of the 1990 

Clean Air Act amendments are between 1:1 and 4:1 (U.S. EPA (1999), Portney (2000)). 

Like most major pollution control programs, the goals of the Clean Air Act are improving 

                                                 
11 For a district, the range of the NPV of benefits is based on the upper and lower bounds of per incident 

health care costs (7000 and 3000) respectively.  NPVs are calculated as 
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ambient air quality. The difference between our back of the envelope calculations and 

these estimates suggests that, on the margin, policies targeting localized air pollution may 

be particularly cost effective relative to ambient air pollution policies. 
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Table 1. Summary Statistics for the Baseline (Pre-Adoption) Year 

 
Characteristic 

The 53 
Full Sample 

Districts 

The 9 
Non-Adopter 

Districts 

The 34 
Adopter 
Districts 

Difference: 
Adopter vs. 

Non-Adopter 

 
p-value for 
Difference 

      
Student population 11239 2335 10597 -8262 0.01 
Per capita income 24841 23609 24166 -557 0.79 
Percent of pop. below poverty line .074 .086 .075 .011 0.48 
School staff members per student .115 .120 .100 .020 0.15 
Percent white .799 .777 .737 .040 0.42 
School Bus Fleet Age 8.92 8.94 9.59 -0.65 0.52 
Children’s Bronchitis and Asthma cases (per 100,000 children) 22.83 14.22 23.87 -9.64 0.01 
Chronic Adult Bronchitis and Asthma cases (per 100,000 adults) 2.38 0.68 2.73 -2.04 0.01 
Children’s Pneumonia and Pleurisy cases (per 100,000 children) 9.28 3.29 11.11 -7.82 0.01 
Chronic Adult Pneumonia and Pleurisy cases (per 100,000 adults) 19.27 14.32 20.38 -6.06 0.01 
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Table 2. Results: Two period, Two Group Difference-in-Differences  

 
  

All Retrofits 
Bronchitis & Asthma Cases 

 
All Retrofits 

Pleurisy & Pneumonia Cases 

 
CCV Retrofits 

Bronchitis & Asthma Cases 

 
CCV Retrofits 

Pleurisy & Pneumonia Cases 
 

 All 
At-Risk 
Groups 

 

Children 

Adults 
with 

Chronic 
Illness 

 

All 
At-Risk 
Groups 

 

Children 

Adults 
with 

Chronic 
Illness 

 

All 
At-Risk 
Groups 

 

Children 

Adults 
with 

Chronic 
Illness 

 

All 
At-Risk 
Groups 

 

Children 

Adults 
with 

Chronic 
Illness 

 
Diff-in-Diff 
     

-2.88** 
(1.47) 

-5.35 
(5.22) 

-1.80** 
(0.85) 

-3.94 
(3.30) 

-4.14** 
(2.34) 

-3.20 
(4.34) 

-4.33*** 
(1.66) 

-10.2** 
(5.96) 

-1.83** 
(0.79) 

-5.44* 
(3.64) 

-5.06* 
(3.30) 

-5.13 
(4.41) 

Treatment Group           2.55 
(1.64) 

3.13 
(5.60) 

1.81** 
(0.87) 

4.21 
(2.57) 

6.78*** 
(2.27) 

3.16 
(3.00) 

3.26** 
(1.35) 

7.17 
(4.34) 

1.28* 
(0.69) 

0.76 
(3.40) 

6.46** 
(3.00) 

-1.44 
(4.50) 

Post-Treatment              0.62 
(1.31) 

-1.47 
(5.02) 

1.29* 
(0.73) 

2.91 
(3.15) 

-0.37 
(2.07) 

3.76 
(4.01) 

0.78 
(1.37) 

-0.98 
(5.24) 

1.30 
(0.79) 

2.97 
(3.62) 

-0.41 
(2.20) 

3.92 
(4.21) 

Per Capita Income -0.00 
(0.00) 

0.00 
(0.00) 

0.00 
(0.00) 

0.00 
(0.00) 

0.00 
(0.00) 

0.00 
(0.00) 

0.00** 
(0.00) 

0.00** 
(0.00) 

0.00 
(0.00) 

0.00 
(0.00) 

0.00*** 
(0.00) 

0.00 
(0.00) 

% Below Poverty 12.2 
(23.8) 

46.8 
(49.7) 

4.18 
(22.5) 

95.3** 
(45.5) 

20.9 
(38.8) 

120** 
(55.6) 

33.5 
(42.0) 

180 
(139) 

4.90 
(17.4) 

35.9 
(115) 

2.68 
(50.6) 

43.0 
(144) 

Staff per Student -23.9 
(15.4) 

-80.8* 
(42.2) 

-2.50 
(12.2) 

-69.9** 
(29.1) 

-26.8 
(19.3) 

-88.8** 
(34.5) 

-28.7 
(22.5) 

-123 
(73.7) 

-5.02 
(9.89) 

-39.1 
(52.9) 

-11.6 
(28.4) 

-50.0 
(66.3) 

Percent White 
 

-5.76* 
(2.92) 

-28.3*** 
(9.32) 

-0.77 
(1.66) 

-1.98 
(6.44) 

1.95 
(5.00) 

4.17 
(7.97) 

-12.2* 
(6.15) 

-39.6* 
(19.0) 

-3.25 
(2.79) 

-9.46 
(15.4) 

-10.5 
(6.24) 

-7.92 
(20.2) 

Average Bus Age 
 

0.29** 
(0.11) 

0.90** 
(0.40) 

0.09** 
(0.04) 

1.11*** 
(0.41) 

0.40 
(0.25) 

1.37** 
(0.61) 

0.56 
(0.36) 

1.21 
(1.00) 

0.18 
(0.18) 

2.29** 
(1.06) 

0.73 
(0.46) 

2.94* 
(1.50) 

Temperature 
 

-0.02*** 
(0.01) 

-0.06*** 
(0.01) 

-0.01*** 
(0.00) 

-0.04*** 
(0.01) 

-0.04*** 
(0.01) 

-0.03** 
(0.01) 

-0.03*** 
(0.01) 

-0.08*** 
(0.02) 

-0.01** 
(0.00) 

-0.04** 
(0.02) 

-0.03*** 
(0.01) 

-0.05 
(0.03) 

Precipitation 
 

-0.01* 
(0.00) 

-0.01 
(0.01) 

-0.00*** 
(0.00) 

-0.00 
(0.00) 

-0.00 
(0.00) 

0.00 
(0.00) 

-0.00** 
(0.00) 

-0.00 
(0.00) 

-0.00 
(0.00) 

-0.00 
(0.00) 

-0.00 
(0.00) 

-0.00 
(0.01) 

Constant 
 

21.8*** 
(4.16) 

68.8*** 
(12.1) 

6.05** 
(2.42) 

19.7** 
(9.52) 

23.7*** 
(6.65) 

17.4 
(12.2) 

18.5** 
(6.61) 

53.3** 
(24.1) 

5.64*** 
(1.90) 

21.3 
(17.2) 

12.9** 
(5.39) 

24.5 
(22.4) 

 
Obs. 

 
860 

 
860 

 
860 

 
860 

 
860 

 
860 

 
340 

 
340 

 
340 

 
340 

 
340 

 
340 

F-statistic 14.2 12.0 10.1 10.2 10.7 8.69 13.6 10.4 8.87 8.61 21.7 6.19 
Prob > F 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
             

Notes:  clustered standard errors appear in parentheses. *,**, and *** indicate significance at the 10,5, and 1 percent levels. DID coefficients tested against one-sided alternatives. 
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Table 3. Results: Multiple-Period Regression Specifications 
 
  

All Retrofits 
Bronchitis & Asthma Cases 
Among all At-risk Groups 

 

 
CCV Retrofits 

Bronchitis & Asthma Cases 
Among all At-risk Groups 

 

 
All Retrofits 

Pleurisy & Pneumonia Cases 
Among all At-risk Groups 

 

 
CCV Retrofits 

Pleurisy & Pneumonia Cases 
Among all At-risk Groups 

 
 Discrete 

Specification 
Continuous 

Specification 
 

Discrete 
Specification 

Continuous 
Specification 

 

Discrete 
Specification 

Continuous 
Specification 

 

Discrete 
Specification 

Continuous 
Specification 

 
         
Retrofits -0.81** 

(0.50) 
-1.94** 
(1.03) 

-0.79 
(0.81) 

-1.09 
(1.91) 

-0.10 
(0.96) 

-0.02 
(1.97) 

-0.71 
(1.55) 

-3.12 
(3.65) 

Constant Constant Included Constant Included Constant Included Constant Included 
District Fixed Effects 52 District Fixed Effects 52 District Fixed Effects 52 District Fixed Effects 52 District Fixed Effects 
Year Fixed Effects 10 Year Fixed Effects 10 Year Fixed Effects 10 Year Fixed Effects 10 Year Fixed Effects 
Month Fixed Effects 9 Month Fixed Effects 9 Month Fixed Effects 9 Month Fixed Effects 9 Month Fixed Effects 
Weather Temp. and Precip. Controls Temp. and Precip. Controls Temp. and Precip. Controls Temp. and Precip. Controls 
         
         
Obs. 5830 5830 5830 5830 5830 5830 5830 5830 
F-statistic 31.4 31.4 31.3 31.3 17.3 17.3 17.3 17.4 
Prob>F 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
         
Notes:  clustered standard errors appear in parentheses. *,**, and *** indicate significance at the 10,5, and 1 percent levels. DID coefficients tested against one-sided alternatives. 
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Table 4. Results: Falsification Tests 
 
  

Pre-Retrofit Period 
Bronchitis & Asthma Cases 

 
Pre-Retrofit Period 

Pleurisy & Pneumonia Cases 

 
Retrofit Period 

Gastrointestinal Cases 

 
Retrofit Period 

Kidney & Urinary Tract Cases 
 

 
Healthy 
Adults 

 All 
At-Risk 
Groups 

 
 

Children 

Adults 
with 

Chronic 
Illness 

 

All 
At-Risk 
Groups 

 

Children 

Adults 
with 

Chronic 
Illness 

 

All 
At-Risk 
Groups 

 

Children 

Adults 
with 

Chronic 
Illness 

 

All 
At-Risk 
Groups 

 
 

Children 

Adults 
with 

Chronic 
Illness 

 

 
Bronch. 

& 
Asthma 

 
Pleurisy 

& 
Pneum. 

               
Diff-in-Diff 
 

2.66 
(2.29) 

3.03 
(3.88) 

2.50 
(2.57) 

3.89 
(3.84) 

0.52 
(1.78) 

4.73 
(4.82) 

0.02 
(4.19) 

-0.05 
(1.73) 

0.28 
(5.21) 

0.28 
(3.11) 

7.98 
(7.99) 

-1.49 
(2.91) 

-0.19 
(2.54) 

0.23 
(0.68) 

Treatment 
   Group 

-0.58 
(1.32) 

1.33 
(2.95) 

-1.43 
(1.42) 

2.62 
(2.30) 

3.25* 
(1.80) 

2.91 
(2.92) 

2.49 
(2.37) 

-1.52 
(1.84) 

3.98 
(2.83) 

2.66 
(1.95) 

-1.38 
(4.34) 

3.59** 
(1.68) 

2.53 
(2.42) 

1.05 
(1.07) 

Post 
   Treatment 

-1.63 
(2.17) 

-0.51 
(3.61) 

-2.10 
(2.46) 

-0.48 
(3.70) 

-0.30 
(1.19) 

-0.15 
(4.70) 

2.80 
(4.25) 

0.46 
(1.59) 

3.51 
(5.29) 

0.86 
(3.10) 

-8.32 
(7.82) 

3.31 
(2.89) 

-2.39 
(2.05) 

-1.08 
(0.65) 

Constant  Constant Included  Constant Included  Constant Included  Constant Included Included 
Controls  Full Demographics Included  Full Demographics Included  Full Demographics Included  Full Demographics Included Included 
Weather  Temp. & Precip. Included  Temp. & Precip. Included  Temp. & Precip. Included  Temp. & Precip. Included Included 
               
 
Obs. 

 
860 

 
860 

 
860 

 
860 

 
860 

 
860 

 
860 

 
860 

 
860 

 
860 

 
860 

 
860 

 
860 

 
860 

F-statistics 22.3 23.4 2.62 10.3 14.1 11.6 5.04 14.0 4.21 3.48 2.89 7.86 7.23 3.72 
Prob > F 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 
               
Notes:  clustered standard errors appear in parentheses. *,**, and *** indicate significance at the 10,5, and 1 percent levels. DID coefficients tested against one-sided alternatives. 
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Data Appendix 
 
This data appendix describes how data observed at a finer geographic level (zip code and 
latitude/longitude) is aggregated to match our unit analysis: school districts. 
 
Health Data 
 
Health outcome data consists of hospital discharge records from the Washington State 
Department of Health.  Because of confidentiality concerns, records in the database only 
contain home zip code information, rather than a complete street address.  As we do not 
observe a patient’s exact street address, school district boundaries (i.e. GIS layers) cannot 
be used to assign an individual who appears in the health data to a specific school district. 
As a result, we need an algorithm to map health treatments observed at the five-digit zip 
code level to school districts. 
 
Our algorithm uses schools within zip codes (as opposed to surface area, for example) as 
assignment weights.  Specifically: 
 

1. We compile a list of all schools in the Puget Sound region, their address zip 
codes, and their school district. 

2. For each health treatment in the health data, we use the list constructed in (1) to 
identify all of the schools in that patient’s zip code. 

3. We assign health treatments to districts based on the following rules: 
a. If all schools in the patient’s zip code belong to the same district, we 

assign this health record fully to that district. 
b. If the patient’s zip code contains schools from multiple districts, we assign 

shares of the outcome to each district in proportion to the share of schools 
(per district) in the patient’s zip code. For example, if a zip code contains 
2 schools from district A and 3 schools from district B, we would assign 
2/5ths of all health outcomes in that zip code to district A and 3/5ths to 
district B. 

c. If there are no schools physically located in a patient’s zip code, we assign 
the health treatment for this patient to the nearest school district, as 
measured by distance from the centroid of the zip code to the edge of a 
school district. 

 
Weather Data 
 
All regression specifications contain mean monthly temperature and total monthly 
precipitation derived from the US Historical Climatology Network.  To map from 
individual weather stations to school districts, we simply assign school districts to the 
closest weather station, where “closest” is determined by the Vincenty formulae for 
geodesic distances. In the final analysis, data from 10 distinct weather stations in the 
Puget Sound region are matched to the 53 school districts for each month. 
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Appendix Table A1. Specification Sensitivity Results  

 
 ANNUAL DATA CONTROL GROUP CONTAINS RETROFITS IN PROGRESS 
  

All Retrofits 
Bronchitis & Asthma Cases 

 
All Retrofits 

Pleurisy & Pneumonia Cases 

 
All Retrofits 

Bronchitis & Asthma Cases 

 
All Retrofits 

Pleurisy & Pneumonia Cases 
 

 All 
At-Risk 
Groups 

 

Children 

Adults 
with 

Chronic 
Illness 

 

All 
At-Risk 
Groups 

 

Children 

Adults 
with 

Chronic 
Illness 

 

All 
At-Risk 
Groups 

 

Children 

Adults 
with 

Chronic 
Illness 

 

All 
At-Risk 
Groups 

 

Children 

Adults 
with 

Chronic 
Illness 

 
Diff-in-Diff 
     

-2.83** 
(1.60) 

-5.18 
(5.63) 

-1.75** 
(0.93) 

-3.88 
(3.59) 

-4.01** 
(2.49) 

-3.15 
(4.74) 

-1.60* 
(1.00) 

-2.29 
(2.99) 

-1.03* 
(0.64) 

-1.75 
(1.85) 

-3.37** 
(1.52) 

-0.65 
(2.61) 

Treatment Group           2.67 
(1.63) 

3.55 
(5.51) 

1.94** 
(0.92) 

4.66* 
(2.66) 

7.34*** 
(2.31) 

3.54 
(3.24) 

0.68 
(1.10) 

-0.90 
(3.34) 

0.58 
(059) 

1.05 
(1.82) 

3.46** 
(1.61) 

0.04 
(2.35) 

Post-Treatment              0.33 
(1.83) 

-2.74 
(5.61) 

1.02 
(0.96) 

2.91 
(4.31) 

-0.93 
(2.51) 

3.92 
(5.71) 

-0.68 
(0.73) 

-4.59* 
(2.62) 

0.51 
(0.41) 

0.81 
(1.61) 

-1.12 
(1.04) 

1.33 
(2.03) 

Full Controls INCLUDED INCLUDED INCLUDED INCLUDED 
Constant INCLUDED INCLUDED INCLUDED INCLUDED 
 
Obs. 

 
86 

 
86 

 
86 

 
86 

 
86 

 
86 

 
1060 

 
1060 

 
1060 

 
1060 

 
1060 

 
1060 

             
Notes:  clustered standard errors appear in parentheses. *,**, and *** indicate significance at the 10,5, and 1 percent levels. DID coefficients tested against one-sided alternatives. 
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Appendix Table A2. Specification Sensitivity Results  
 

 HIGHER THRESHOLD FOR ‘ADOPTER’ STATUS LOWER THRESHOLD FOR ‘ADOPTER’ STATUS 
  

All Retrofits 
Bronchitis & Asthma Cases 

 
All Retrofits 

Pleurisy & Pneumonia Cases 

 
All Retrofits 

Bronchitis & Asthma Cases 

 
All Retrofits 

Pleurisy & Pneumonia Cases 
 

 All 
At-Risk 
Groups 

 

Children 

Adults 
with 

Chronic 
Illness 

 

All 
At-Risk 
Groups 

 

Children 

Adults 
with 

Chronic 
Illness 

 

All 
At-Risk 
Groups 

 

Children 

Adults 
with 

Chronic 
Illness 

 

All 
At-Risk 
Groups 

 

Children 

Adults 
with 

Chronic 
Illness 

 
Diff-in-Diff 
     

-2.91** 
(1.58) 

-4.88 
(5.34) 

-1.93** 
(0.97) 

-3.82 
(3.40) 

-5.01** 
(2.50) 

-2.59 
(4.60) 

-2.81** 
(1.43) 

-5.30 
(5.16) 

-1.76** 
(0.81) 

-3.99 
(3.26) 

-3.67* 
(2.27) 

-3.48 
(4.24) 

Treatment Group           2.49 
(1.54) 

2.87 
(5.05) 

1.80** 
(0.79) 

3.67 
(2.75) 

7.43*** 
(2.08) 

2.07 
(3.39) 

2.50 
(1.63) 

2.84 
(5.68) 

1.91** 
(0.80) 

4.53* 
(2.47) 

6.45*** 
(2.21) 

3.68 
(2.79) 

Post-Treatment              0.67 
(1.32) 

-1.28 
(5.05) 

1.29* 
(0.74) 

2.98 
(3.17) 

-0.34 
(2.10) 

3.85 
(4.05) 

0.58 
(1.30) 

-1.59 
(5.01) 

1.27 
(0.71) 

2.90 
(3.15) 

-0.35 
(2.06) 

3.74 
(3.99) 

Full Controls INCLUDED INCLUDED INCLUDED INCLUDED 
Constant INCLUDED INCLUDED INCLUDED INCLUDED 
 
Obs. 

 
680 

 
680 

 
680 

 
680 

 
680 

 
680 

 
980 

 
980 

 
980 

 
980 

 
980 

 
980 

             
Notes:  clustered standard errors appear in parentheses. *,**, and *** indicate significance at the 10,5, and 1 percent levels. DID coefficients tested against one-sided alternatives. 
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Appendix Table A3. Specification Sensitivity Results  
 

 DEPENDENT VARIABLES NOT SCALED BY POPULATION 
  

All Retrofits 
Bronchitis & Asthma Cases 

 
All Retrofits 

Pleurisy & Pneumonia Cases 
 All 

At-Risk 
Groups 

 

Children 

Adults 
with 

Chronic 
Illness 

 

All 
At-Risk 
Groups 

 

Children 

Adults 
with 

Chronic 
Illness 

 
Diff-in-Diff 
     

-1.02*** 
(0.23) 

-0.90*** 
(0.22) 

-0.12* 
(0.08) 

-0.67* 
(0.42) 

-0.43*** 
(0.12) 

-0.24 
(0.37) 

Treatment Group           0.41 
(0.30) 

0.32 
(0.28) 

0.12 
(0.10) 

1.17** 
(0.50) 

0.38*** 
(0.13) 

0.77 
(0.40) 

Post-Treatment             0.09 
(0.10) 

0.01 
(0.13) 

0.08 
(0.05) 

0.06 
(0.29) 

0.20 
(0.07) 

0.04 
(0.25) 

Population  0.08*** 
(0.01) 

- - 0.15*** 
(0.02) 

- - 

Children Population - 0.21*** 
(0.02) 

- - 0.07*** 
(0.01) 

- 

Adult Population - - 0.02*** 
(0.01) 

- - 0.18*** 
(0.02) 

Full Controls INCLUDED INCLUDED 
Constant INCLUDED INCLUDED 
 
Obs. 

 
860 

 
860 

 
860 

 
860 

 
860 

 
860 

       
Notes:  clustered standard errors appear in parentheses. *,**, and *** indicate significance at the 
10,5, and 1 percent levels. DID coefficients tested against one-sided alternatives. 

 


