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Absolute Humidity, Temperature, and Influenza Mortality:  
30 Years of County-Level Evidence from the United States 

 
ABSTRACT: Recent research exploring associations between environmental factors and 

influenza outcomes has devoted substantial attention to the role of absolute humidity. Yet, the 

existing literature provides very little quantitative epidemiological evidence on the relationships 

between absolute humidity, other weather variables, and influenza outcomes in human 

populations. The present study helps fill this gap by analyzing longitudinal weather and influenza 

mortality data, observed every month between January 1973 and December 2002, for each of 

359 urban US counties. A flexible regression model simultaneously explores fully nonlinear 

relationships between absolute humidity and influenza outcomes, and temperature and influenza 

outcomes. Results indicate that absolute humidity is an especially critical determinant of 

observed human influenza mortality, even after controlling for temperature. There are important 

non-linear relationships; humidity levels below approximately 6 grams of water vapor per 

kilogram of air are associated with increases in influenza mortality. Model predictions suggest 

that approximately half of the average seasonal differences in US influenza mortality can be 

explained by seasonal differences in absolute humidity alone. Temperature modestly influences 

influenza mortality as well, although results are less robust.  
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Absolute Humidity, Temperature, and Influenza Mortality:  
30 Years of County-Level Evidence from the United States 

 
 
 Estimates suggest that influenza causes between 1,700 and 59,000 deaths annually in the 

United States (1-6). Total morbidity from influenza is poorly understood, but also represents a 

significant public health threat. Despite the widespread prevalence, mechanisms driving 

influenza host susceptibility, disease transmission, and virus survival remain controversial (7,8).  

 Observers have long suspected that environmental factors are among the key 

determinants of influenza incidence, primarily because outbreaks exhibit pronounced seasonal 

and geographic patterns. Early experimental studies found that solar insolation reduces influenza 

virus survival (9-11). More recent related investigations showed that increased vitamin D levels 

may enhance host immunity (12-14). Other work found that low relative humidity and low 

temperature favor influenza virus survival and disease transmission (15-18). Cold temperatures 

and precipitation may also cause susceptible individuals to move indoors, thereby increasing 

disease transmission (19,20). 

 Of late, the literature exploring environmental determinants of influenza has devoted 

substantial attention to absolute humidity. In contrast to relative humidity, which is a function of 

water vapor and temperature, absolute measures of humidity isolate the water vapor content in a 

mass (or parcel) of air. A reevaluation of an experimental study involving guinea pigs found that 

low absolute humidity is better than low relative humidity at predicting influenza transmission 

(21-22). Recent epidemiologic evidence, using aggregate state-level data from the United States, 

showed that anomalous drops in absolute humidity predict the onset of human influenza 

outbreaks as measured by excess mortality (23). Emerging simulation evidence on pandemic 
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outbreaks is further supportive of a link between declines in absolute humidity and enhanced 

disease transmission or virus survival (8).  

Despite recent advances, the literature provides little quantitative epidemiological 

evidence on the simultaneous relationships between absolute humidity, other weather variables, 

and influenza outcomes in human populations. This paper helps fill that gap. The present study 

analyzes longitudinal weather and influenza data, observed every month between January 1973 

and December 2002, for each of 359 urban US counties. The aim is to understand the 

simultaneous impacts of absolute humidity and temperature on influenza mortality.  

 The authors believe this analysis makes several contributions. First, the data permit the 

first large-scale ecologic analysis of the impact of absolute humidity and other weather 

conditions on human influenza mortality. Second, weather data observed at the county-level 

reduce misclassification errors that may plague data observed at larger geographic scales like 

states or nations. Third, the study’s statistical methods control for numerous possible 

confounders, reducing the possibility that observed weather-influenza links are driven by omitted 

factors independently associated with both environmental factors and influenza. Fourth, the 

analysis considers temperature and humidity simultaneously, allowing the researchers to 

separately assess: (a) the effects of humidity holding other weather conditions constant, and (b) 

the effects of temperature holding other weather conditions constant. Since temperature and 

absolute humidity are naturally related (7,23), models that individually examine temperature or 

humidity will inaccurately estimate their respective effects on influenza morbidity and mortality. 

 

MATERIALS AND METHODS  
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Influenza Mortality Data  

  

 Mortality data were obtained from the National Center of Health Statistics’ Multiple 

Causes of Death files. All deaths with an International Classification of Diseases (ICD) code 

associated with “influenza” for a primary or secondary cause were categorized as influenza 

mortality (24,25). Dushoff et al. (6) showed that these multiple-cause influenza classifications 

are significantly more robust than single underlying-cause classifications alone. For each county 

and month, mortality rates per 100,000 individuals were calculated by dividing the total 

influenza death counts by the estimated population in 100,000s. Population data for each county-

year were obtained from the National Cancer Institute’s Surveillance Epidemiology and End 

Results series. 

 It is likely that influenza mortality rates are measured with error. Influenza deaths are not 

always corroborated virologically, and deaths due to influenza may be attributed to other 

respiratory and circulatory diseases (6,26). ICD coding practices changed in 1979 and 1999. ICD 

coding may vary across seasons, and misclassifications may be more prevalent in summer 

months. ICD coding may also vary systematically across locations due to differences in age 

profiles, availability of virus surveillance, and other factors.  

 

Weather Data  

 

 Weather data were obtained from the National Climatic Data Center’s Global Summary 

of the Day files. The weather data are organized by station and day. Daily mean temperatures 

were reported in degrees Fahrenheit (F). Daily specific humidity, a common measure of 
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absolute humidity, in grams of water vapor per kilogram of air (g/kg) was calculated from daily 

dew point and atmospheric pressure data following standard meteorological formulas (27,28). 

Daily total precipitation was obtained in inches. All station-days missing absolute humidity were 

dropped (0.4% of all station days) and all station-days missing precipitation were dropped (3.0% 

of all station days). Stations missing more than half of the absolute humidity and/or precipitation 

observations for any given year between 1973 and 2002 were then dropped entirely.  

 Associations between environmental factors and mortality are likely nonlinear, but the 

precise functional forms are unknown a priori. Commonly postulated relationships for 

temperature and mortality are U- or J-shaped (29). One recent study presents evidence that the 

relationship between absolute humidity and all-cause mortality is reverse J-shaped (30). 

Consequently, for each station-day, the present study constructs all weather exposure 

assessments from piecewise splines. Splines allow the relationships between weather conditions 

and mortality to vary flexibly at different points along the factor’s distribution, but do not require 

the researchers to choose a specific functional form ahead of time. For this reason, the use of 

splines is increasingly common in the epidemiologic literature (31).  

In our application, piecewise cubic splines were constructed with the STATA11 

command ‘mkspline’, so that the final relationship between mortality and the given weather 

condition is a piecewise function composed of polynomial segments (32). Note that the cubic 

spline allows for smoothness at the knots, unlike a linear spline. For the technically inclined 

reader, absolute humidity functions have knots at 3, 6, 9, 12, 15, and 18g/kg. Temperature 

functions have knots at 15, 30, 45, 60, 75, and 90°F (-9.4, -1.1, 7.2, 15.6, 23.9, and 32.2°C) and 

precipitation functions have knots at 0.25, 0.50, 0.75, 1.00 inches (6.4, 12.7, 19.1, and 25.4 mm).  
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Analysis Sample 

 

 The final unit of analysis is county by month. No spatial or temporal aggregation was 

necessary for mortality outcomes, which are reported at the county-month level in the Multiple 

Cause of Death Public Use dataset. However, both spatial and temporal aggregation was 

necessary for the weather exposure variables, as weather conditions are reported at the station-

day level.  

Aggregating weather exposure to county-month level independent variables involves 

three steps. First, the spline exposure variables described above were aggregated to the county-

day level by calculating the inverse distance-weighted average over all stations within 50 miles 

of each county’s geographic centroid (33). Second, the county-day exposure variables were 

averaged across days within a county-month. Note that averaging spline variables preserves 

weather information from all days, including extreme weather days. Third, the weather exposure 

variables were averaged over the current and preceding month. This two-month moving average 

lag structure allows time for disease transmission, permits lags between infection and death, and 

permits lags between surveillance culture results and ICD coding. Evidence suggests such lags 

may be important (6,34). An additional advantage of the two-month moving average is that it 

minimizes potential biases from short-term “harvesting” (29,35). If the weather accelerates some 

deaths by a few days or weeks, these deaths will not impact our estimates. We denote our final 

exposure functions as f(HUMID), g(TEMP), h(PRCP).  

 The final longitudinal dataset contains 129,240 observations on 359 urban counties 

observed over 360 months spanning January 1973 to December 2002. The 359 densely populated 

counties in the sample contained 65% of total the US population over the sample period. More 
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rural counties were not evaluated for data availability reasons. Counties with fewer than 100,000 

inhabitants between 1973 and 2002 lacked complete mortality data and were not evaluated. 11% 

of counties with complete mortality data lacked complete weather station data and were thus also 

not evaluated. 

 

Statistical Analysis 

 

 This study’s primary statistical strategy is to regress a given county’s influenza mortality 

in a given time period on flexible non-linear functions of that county’s absolute humidity, 

temperature, and precipitation in the recent past (a two month moving average). The basic 

statistical model is: 

MORT = f(HUMID) + g(TEMP) + h(PRCP) + μcm + Φt + ε. 

MORT is the influenza mortality rate for a given county and month. f(HUMID), g(TEMP), and 

h(PRCP) are the exposure functions for absolute humidity, temperature, and precipitation. The 

model estimates several parameters for each exposure function. μcm are estimated county by 

calendar-month fixed effect parameters and Φt are estimated time period fixed effect parameters. 

ε is a normally distributed error term.  

 The county by calendar-month fixed effects μcm are included so that our model estimates 

relationships between anomalous mortality rates and anomalous weather conditions for a given 

county and calendar month. This approach is equivalent to estimating seasonal mortality 

baselines for each county and then analyzing excess deaths only. These fixed effects also 

minimize omitted variable concerns that might arise from potential confounders that vary across 

counties and/or seasons but remain roughly constant across years. Examples of potential cross-
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county or seasonal confounding factors in this context include miscoding of influenza deaths, 

income, socioeconomic status, race, age, industrial composition, population density, air 

pollution, air conditioning usage, school characteristics, and school attendance (29). 

 Time period fixed effects Φt are included to minimize omitted variable concerns that 

might arise from potential confounders that are common to all sample counties but vary over 

time. Examples of time varying confounding factors in this context include macroeconomic 

shocks that influence health behaviors, technological advances in health treatments, and trends in 

vaccination rates. Time period fixed effects are equivalent to fully flexible national time trends. 

As an interpretation exercise, we also predict how much of the difference in influenza 

mortality between January and July can be explained by seasonal differences in humidity. To do 

so, we predict each month’s average influenza mortality as a function of average absolute 

humidity in that month by multiplying: the average frequency of days at a given point on the 

humidity distribution –and– our core estimates of the humidity-influenza relationship. Second, 

we calculate the difference between the predicted influenza mortality in January and the 

predicted influenza mortality in July. Third, we calculate the difference between actual influenza 

mortality in January and actual influenza mortality in July. Fourth, we divide the predicted 

difference (step 2) by the observed difference (step 3) to obtain a ratio. 

Analysis is carried out with STATA11 (32). Standard errors used to calculate confidence 

intervals are clustered to allow for arbitrary serial correlation at the state level. 

 

RESULTS 

 Table 1 summarizes the sample data, over all months and by calendar month. For our 359 

urban US counties, monthly influenza mortality rates averaged 0.071. Mortality rates were 
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substantially higher when deaths containing pneumonia as a primary or secondary cause were 

also included. Influenza mortality was as much as 40 times higher during December to March 

than during June to September.  

Perhaps the most striking feature of Table 1 is the seasonal correlation between absolute 

humidity and temperature. Monthly absolute humidity data in column 1 and monthly temperature 

data in column 2 have a correlation of 0.96. This large correlation implies that: (a) causal 

relationships are unlikely to be correctly identified in models that do not analyze humidity and 

temperature simultaneously, and (b) datasets with a large degree of spatial and temporal 

variation, like the one used here, are necessary to statistically distinguish the effects of humidity 

from temperature. Figure 1 illustrates the average cross-state differences in influenza mortality 

rates for the years 1973-2002. Like Table 1, the raw averages in Figure 1 are suggestive of a 

relationship between weather and influenza mortality.  

 Figure 2 shows the main results. The general relationship between absolute humidity and 

influenza mortality follows a downward sloping exponential shape. Low humidity levels are 

associated with statistically significant increases in influenza mortality. For example, on average, 

a shift in the annual distribution of humidity levels that produces one additional day at 3g/kg, and 

one less day at 9g/kg, is associated with a 0.6% (95% confidence interval [CI]: 0.3%, 0.9%) 

increase in mortality relative to the average annual influenza mortality rate. For mean daily 

specific humidity levels below 6g/kg, the lower the humidity level the greater the increase in 

average influenza mortality. Similarly, on average, a shift in the annual distribution of daily 

humidity levels that produces one additional day at 1g/kg, but one less day at 9g/kg, is associated 

with a 1.2% (95% CI: 0.6%, 1.8%) increase relative to the average annual influenza mortality 

rate. While there is a statistically significant negative relationship between humidity and 
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influenza mortality at mean daily humidity levels below 6g/kg, this study detects no relationship 

between humidity and influenza mortality at mean daily humidity levels above 6g/kg. 

The detected association between absolute humidity and influenza mortality is practically 

large, and our results indicate that changes in absolute humidity alone can explain much of 

influenza’s seasonality in the US. The core model predicts that approximately one-half (51%) of 

the difference between the average US January influenza mortality rate and the average US July 

influenza mortality rate can be explained by average seasonal differences in absolute humidity 

alone. 

 The general relationship between temperature and influenza mortality follows a bell 

shaped curve. This study detects no statistically significant relationship between temperature and 

influenza mortality at mean daily temperatures below approximately 15F (-9.4°C) or above 

approximately 60F (15.6°C).  Mean daily temperatures between 15F (-9.4°C) and 30F (-

1.1°C) are also not associated with statistically significant changes in influenza mortality, but 

point estimates are large in magnitude. Mean daily temperatures between 30F (-1.1°C) and 60F 

(15.6°C) are associated with statistically significant increases in influenza mortality, with the 

peak influenza mortality impact around a mean daily temperature of 30F (-1.1°C). On average, 

a shift in the annual temperature distribution that produces one additional day at 30F (-1.1°C), 

but one less day at 65F (18.3°C), is associated with a 0.8% (95% CI: 0.1%, 1.8%) increase in 

mortality relative to relative to the average annual influenza mortality rate. A shift in the annual 

temperature distribution that produces one additional day at 50F (10°C), but one less day at 

65F (18.3°C), is associated with a smaller, but still significant, 0.3% (95% CI: 0.1%, 0.5%) 

increase relative to the average annual influenza mortality rate.  
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Sensitivity analysis 

 

 A natural concern is that influenza deaths are not always corroborated virologically. So, 

following Dushoff et al. (6), we conducted a sensitivity investigation that replicated the analysis 

using outcome measures that include both influenza and pneumonia as primary or secondary 

causes of death. Results in Figure 3 indicate that the qualitative humidity-mortality and 

temperature-mortality relationships are similar to main results in Figure 2. With much higher 

death rates from pneumonia and some pneumonia deaths being unrelated to influenza, relative 

magnitudes are considerably smaller in magnitude as expected.  

 Another concern is that ICD coding practices change over time. To address possible 

concerns about long-run changes in classification systems, we conducted a sensitivity 

investigation that replicated the analysis using only the ICD-9 years (1979-1998). Results in 

Figure 4 indicate that the humidity-mortality relationships are similar to main results in Figure 2. 

The relationship between temperature and influenza mortality, however, is less robust. To 

address possible concerns about seasonal differences in coding, we conducted a sensitivity 

investigation that replicated the analysis omitting summer months (where the probability of 

influenza misclassification may be higher). Results in Figure 5 are similar to our main results in 

Figure 2. 

 Next, we address concerns that our results are driven by our choice of lag structure (i.e. 

two months). Results in Web Figure 1 indicate that different exposure lag structures generate 

qualitative humidity-mortality and temperature-mortality relationships that are similar to main 

results in Figure 2. The only major difference is that the magnitude of weather-mortality 

relationships is diminished when exposure variables are based on contemporaneous months 
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alone. This suggests that short-term exposure variables may underestimate relationships between 

weather and influenza mortality. 

 We verify that our estimates are robust to changes in how we control for potential 

confounders. Results in Web Figure 2 indicate that different fixed effect approaches generate 

humidity-mortality relationships that are similar to main results in Figure 2. The relationship 

between temperature and influenza mortality, however, is less robust. Note that all specifications 

with county fixed effects (as opposed to county by calendar-month fixed effects) generate 

smaller weather-mortality relationships. This suggests that failure to account for local seasonality 

may underestimate relationships between weather and influenza mortality. 

Finally, we investigate whether estimated relationships vary geographically within the 

US Unfortunately, a full regional investigation is beyond the scope of the present study, as the 

high correlation between temperature and humidity in nature complicates estimation of models 

that select on counties with similar climates. Web Figures 3 and 4 indicate that relationships 

between weather and influenza mortality are roughly similar between “high” and “low” humidity 

counties and between “high” and “low” temperature counties. In Web Figure 3, we find a 

somewhat more pronounced effect of low absolute humidity on influenza mortality in those 

counties with typically high average humidity. In Web Figures 3 and 4, we find a somewhat 

more pronounced effect of temperature on influenza mortality in those counties with typically 

less humid conditions and in those counties with typically colder conditions. 

 

DISCUSSION 
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 This study provides novel ecologic evidence that absolute humidity and temperature 

impact influenza mortality in human populations. Most significantly, this research supports the 

emerging hypothesis that absolute humidity is a critical determinant of observed influenza 

outcomes, even after controlling for temperature. These results bolster recent laboratory findings 

from guinea pigs and state-level epidemiologic evidence (21,23). An additional key result is that 

the humidity-influenza relationship is nonlinear. Lower humidity levels only result in greater 

influenza mortality at mean daily specific humidity levels below 6g/kg. Incremental changes in 

humidity do not significantly affect influenza mortality when mean daily specific humidity 

exceeds a 6g/kg threshold. Temperature appears to be an important determinant of human 

influenza outcomes, even after controlling for absolute humidity. However, temperature-

mortality estimates are sensitive to model specification. 

 Our results have important implications for public health and policy. Estimates can be 

used to help predict the location and timing of future influenza mortality. In addition, highlighted 

nonlinearities between influenza mortality and absolute humidity may be especially useful for 

understanding regional variation in influenza outcomes triggered by climate change. 

 The present study’s data and methods permit an unusually large-scale and robust 

quantitative assessment of the relationship between weather conditions and influenza mortality. 

However, we note two limitations related to outcome measures. First, the outcome measure 

(mortality) does not directly incorporate impacts on influenza morbidity, which may be more 

directly linked to humidity and temperature than influenza mortality. Second, all outcome 

measures are measured with error. The present study’s goal is to explore the relationship 

between weather conditions and observed influenza mortality, not to explore the total number of 

deaths that are attributable to influenza. Under the assumption of uncorrelated errors of 
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measurement, quantitative assessments of weather-influenza relationships from regression 

models are correct on average (36). However, regression standard errors may be inflated. As a 

consequence, it may be more difficult to reject the null hypothesis of no relationship between 

weather conditions (i.e. temperature) and influenza mortality.  

 We note other limitations. First, we cannot completely rule out confounding factors. Our 

modeling strategy controls for confounding factors that are approximately fixed at the county-

level, vary by season at the county-level, or vary across time at the national level. However, 

omitted variables can bias estimated relationships if the omitted factors are correlated with 

anomalous, rather than typical, weather outcomes. Specifically, pollution concentrations, air 

conditioning usage, school attendance, and ICD coding errors that vary with unusual weather 

conditions could bias results. Second, the present study remains agnostic on specific 

mechanisms. We cannot definitely differentiate between host susceptibility, disease transmission, 

and virus survival channels, nor can we definitively identify if indoor or outdoor exposure drives 

our results. It is interesting to note, however, that the present study’s results show that absolute 

humidity significantly impacts influenza outcomes even after controlling for temperature and 

precipitation events that may cause crowding indoors. It is unlikely that behavior responds 

directly to absolute humidity in isolation, so results may be suggestive of virus survival or host 

susceptibility mechanisms. Third, SIR dynamics are not a feature of our model. Fourth, our study 

is set in the temperate climate of the US. Our results do not shed light on the long-standing 

puzzle of rainy season influenza epidemics in tropical countries or semi-tropical regions within 

the US (like the Gulf states) (7).  

 The collective limitations of this study and related research indicate that much work 

remains. More laboratory and modeling evidence is necessary to better understand influenza 
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mechanisms. Also, more observational and ecologic evidence is necessary to understand 

influenza outcomes in a world complicated by human behavior. Nevertheless, this research 

demonstrates that future explorations that target absolute humidity may produce high returns. 
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Table 1. Average Monthly Weather Outcomes and Influenza Mortality Rates, 359 Urban United States Counties, 1973-2002.a 
 

            

Month 

Daily specific 
humidity 

(g/kg) 
Daily temperature 

°F (°C) 

Daily 
precipitation in 

inches (mm) 

Monthly 
influenza deaths 
per 100,000b,c 

Monthly 
influenza/ 

pneumonia deaths 
per 100,000b,c,d 

All 7.75 57.7 (14.3) 0.102 (2.59) 0.071 6.254 
Jan 4.01 38.4 (3.6) 0.102 (2.59) 0.251 8.744 
Feb 4.30 41.6 (5.3) 0.097 (2.47) 0.242 7.526 
Mar 5.13 48.3 (9) 0.113 (2.87) 0.162 7.419 
Apr 6.30 56.4 (13.5) 0.104 (2.63) 0.043 6.199 
May 8.58 64.6 (18.1) 0.109 (2.78) 0.014 5.694 
Jun 11.00 71.9 (22.2) 0.108 (2.75) 0.008 5.221 
Jul 12.64 75.9 (24.4) 0.104 (2.63) 0.007 5.236 

Aug 12.61 74.9 (23.8) 0.106 (2.69) 0.006 5.117 
Sep 10.66 69.2 (20.6) 0.107 (2.71) 0.008 5.103 
Oct 7.68 59.6 (15.3) 0.087 (2.22) 0.016 5.804 
Nov 5.72 50.1 (10.1) 0.097 (2.47) 0.022 5.881 
Dec 4.37 41.5 (5.3) 0.091 (2.31) 0.072 7.108 

 
Abbreviation: ICD, International Classification of Diseases.    
 
a All summary statistics are calculated using population weights from 2000. b The ICD-8 codes were used for 
the years 1973-1978, ICD-9 codes for the years 1979-1998, and ICD-10 for the years 1999-2002. c Influenza 
deaths include all deaths where influenza is listed as a primary or secondary cause of death. The codes for 
influenza are 470 through 474 (ICD-8), 487 (ICD-9), and J-10 through J-11 (ICD-10). d Influenza/pneumonia 
deaths include all deaths where influenza and/or pneumonia are listed as a primary or secondary cause of 
death. The codes for pneumonia are 480 through 486 (ICD-8), 480 through 486 (ICD-9), and J-12 through J-18 
(ICD-10). 
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Figure 2: Regression estimates of the relationship between influenza mortality and weather 
conditions, 359 urban US counties, 1973-2002. In A, the solid line depicts the average 
percentage change in the annual influenza mortality rate from one additional day at a given 
humidity level, relative to one additional day with a humidity of 9g/kg. In B, the solid line 
depicts the average percentage change in the annual influenza mortality rate from one additional 
day at a given temperature, relative to one additional day with a temperature of 65°F (18.3°C). 
All dotted lines represent 95% confidence intervals. In A, low mean daily humidity is associated 
with statistically increased mortality after controlling for other weather conditions and potential 
confounders. In B, moderately low mean daily temperature is associated with statistically 
increased mortality after controlling for other weather conditions and potential confounders.  
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Figure 3: Regression estimates of the relationship between influenza/pneumonia mortality and 
weather conditions, 359 urban US counties, 1973-2002. In A, the solid line depicts the average 
percentage change in the annual influenza/pneumonia mortality rate from one additional day at a 
given humidity level, relative to one additional day with a humidity of 9 g/kg. In B, the solid line 
depicts the average percentage change in the annual influenza/pneumonia mortality rate from one 
additional day at a given temperature, relative to one additional day with a temperature of 65°F 
(18.3°C). All dotted lines represent 95% confidence intervals. Point estimates are qualitatively 
similar to Figure 2. 
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Figure 4: Regression estimates of the relationship between influenza mortality and weather 
conditions, 359 urban US counties, ICD-9 years (1979-1998) only. In A, the solid line depicts 
the average percentage change in the annual influenza mortality rate from one additional day at a 
given humidity level, relative to one additional day with a humidity of 9 g/kg. In B, the solid line 
depicts the average percentage change in the annual influenza mortality rate from one additional 
day at a given temperature, relative to one additional day with a temperature of 65°F (18.3°C). 
All dotted lines represent 95% confidence intervals. In A, the estimated relationship is 
qualitatively similar to Figure 2. In B, there is no significant relationship between temperature 
and mortality, unlike Figure 2. 
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Figure 5: Regression estimates of the relationship between influenza mortality and weather 
conditions, 359 urban US counties, 1973-2002, excluding months June through September. In A, 
the solid line depicts the average percentage change in the annual influenza mortality rate from 
one additional day at a given humidity level, relative to one additional day with a humidity of 9 
g/kg. In B, the solid line depicts the average percentage change in the annual influenza mortality 
rate from one additional day at a given temperature, relative to one additional day with a 
temperature of 65°F (18.3°C). All dotted lines represent 95% confidence intervals. Point 
estimates are qualitatively similar to Figure 2. 
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Web Figure 1:  Sensitivity regression estimates of the relationship between influenza mortality and weather 
conditions, 359 urban US counties, 1973-2002. Panels replicate the analysis generating the results in Figure 2 
with variations to the exposure lag structure. In A, the solid line depicts the average percentage change in the 
annual influenza mortality rate from one additional day at a given humidity level, relative to one additional day 
with a humidity of 9 g/kg. In B, the solid line depicts the average percentage change in the annual influenza 
mortality rate from one additional day at a given temperature, relative to one additional day with a temperature of 
65°F (18.3°C). All dotted lines represent 95% confidence intervals. These estimates indicate that relationships 
between influenza mortality and weather conditions are generally robust to lag structure.  
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Panel 2: Adding linear time trends specific to each county by calendar month
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Panel 3: Adding quadratic trends specific to each county by calendar month
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Web Figure 2: Sensitivity regression estimates of the relationship between influenza mortality and weather 
conditions, 359 urban US counties, 1973-2002. Panels replicate the analysis generating the results in Figure 2 
with variations to the modeling structure. In A, the solid line depicts the average percentage change in the annual 
influenza mortality rate from one additional day at a given humidity level, relative to one additional day with a 
humidity of 9 g/kg. In B, the solid line depicts the average percentage change in the annual influenza mortality 
rate from one additional day at a given temperature, relative to one additional day with a temperature of 65°F 
(18.3°C). All dotted lines represent 95% confidence intervals. The A estimates indicate that the relationship 
between influenza mortality and absolute humidity is reasonably robust to modeling choices. The B estimates 
indicate that the relationship between influenza mortality and temperature is sensitive to modeling choices.  
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Panel 2: Counties below the median humidity level
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Web Figure 3: Sensitivity regression estimates of the relationship between influenza mortality and weather 
conditions, dividing counties based on their average absolute humidity, 1973-2002. Panel 1 is the sample of 
counties with average absolute humidity above the median for our sample. Panel 2 is the sample of counties with 
average absolute humidity below the median for our sample. In A, the solid line depicts the average percentage 
change in the annual influenza mortality rate from one additional day at a given humidity level, relative to one 
additional day with a humidity of 9 g/kg. In B, the solid line depicts the average percentage change in the annual 
influenza mortality rate from one additional day at a given temperature, relative to one additional day with a 
temperature of 65°F (18.3°C). All dotted lines represent 95% confidence intervals. The A estimates indicate that 
the relationship between influenza mortality and absolute humidity is reasonably robust to changes in the sample. 
The B estimates indicate that the relationship between influenza mortality and temperature is sensitive to changes 
in the sample.  
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Panel 2: Counties below the median temperature
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Web Figure 4: Sensitivity regression estimates of the relationship between influenza mortality and weather 
conditions, dividing counties based on their average temperature, 1973-2002. Panel 1 is the sample of counties 
with average temperatures above the median for our sample. Panel 2 is the sample of counties with average 
temperatures below the median for our sample. In A, the solid line depicts the average percentage change in the 
annual influenza mortality rate from one additional day at a given humidity level, relative to one additional day 
with a humidity of 9 g/kg. In B, the solid line depicts the average percentage change in the annual influenza 
mortality rate from one additional day at a given temperature, relative to one additional day with a temperature of 
65°F (18.3°C). All dotted lines represent 95% confidence intervals. The A estimates indicate that the relationship 
between influenza mortality and absolute humidity is reasonably robust to changes in the sample. The B estimates 
indicate that the relationship between influenza mortality and temperature is sensitive to changes in the sample.  
 




